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Abstract

In the effort to curb carbon dioxide emissions, the electricity sector
will be subject to substantial environmental regulation. The response of
electricity generators to regulation occurs in markets with volatile elec-
tricity prices where generators face substantial costs of starting up and
shutting down generators. These dynamic considerations may affect the
responsiveness of generators to regulations that price carbon. This pa-
per recovers the cost parameters of the industry and solves for dynamic
competitive equilibria under different environmental policies. The results
show that for modest carbon prices, short-run reductions in emissions are
negligible. However, the impact on firm profits is substantial and will
shape generator investment in the long-run.

Climate change is becoming an important political and economic issue. Gov-
ernments seeking to curb carbon dioxide emissions are implementing environ-
mental regulations that put a price on carbon dioxide emissions or significantly
increase renewable energy production. Since electricity generation is the largest
single source of CO2 in the economy, reducing emissions in the electricity sector
is an important component of any potential policy1.

Carbon regulations interact with electricity-generating decisions in a highly
complex market. In particular, generators incur significant costs of starting
up and shutting down generators in the face of volatile prices within and across
days. Generators essentially face a repeated, high-frequency, entry/exit decision
with entry costs. Firms must weigh the costs associated with starting up (entry)
or shutting down (exit) generators against the expected future profits from their
decisions.

Unlike most entry/exit models, firms in this market are persistent and cannot
be considered identical. Firms exit the wholesale electricity market with the

∗I wish to thank Gautam Gowrisankaran, Ariel Pakes, Allan Collard-Wexler, Alex
Shcherbakov, Daniel Ackerburg, Gregory Crawford, Keisuke Hirano, Mo Xiao, Stan Reynolds,
Price Fishback, Jonah Gelbach, Glenn McDonald, and Bart Hamilton, as well as the partici-
pants in many seminars, for their helpful comments on drafts of this paper.

1The contribution from sectors in the US: electricity (40%) transportation (33%), direct
industrial emissions (17%), direct commercial emissions (4%), direct residential emissions
(6%)(EIA 2008)
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intention of participating again at some point in the future when the conditions
are favorable. Firms are also known to have very different production costs and
entry costs. Since there are a large number of generators, I develop a competitive
entry/exit model that allows for the estimation of firm-specific heterogeneity and
also accommodates firm persistence.

Modeling the dynamics induced by start-up costs is centrally important
when considering potential environmental regulation. For example, environ-
mental policies which encourage the development of wind power will increase
the difference between peak and off-peak residual demand for generation which,
in turn, increases the need for generators to start and stop2. Alternatively,
policies which explicitly price carbon will increasingly make high start-up cost
generators the marginal producers.

Figure 1 illustrates the how dynamics may affect the operation of a gener-
ator as its marginal costs increase due to a price on carbon. In the top row of
diagrams, the generator’s marginal costs are low relative to price. It operates in
every period regardless of whether or not it faces startup costs. In every period
it receives positive operating profits as shown by the shaded area. However,
as a price on carbon increases its marginal costs, it will operate differently in
a static setting where it does not face startup costs than in a dynamic setting
with startup costs. Without startup costs, the generator will shut down when
the market price dips below its marginal cost. However, in the dynamic set-
ting the generator continues to operate in every period even though it incurs
operating losses during some time periods. The firm is willing to incur losses to
avoid paying the startup cost. Finally, when marginal costs are sufficiently high
relative to prices, the generator will choose not to operate at all even though
the static model would predict that there are profits to be made in short, peak
price periods.

This intuition is born out when simulating output with a model. Figure
2 shows the predicted emissions from static and dynamic models for a coal
generator facing significant start-up costs3. A static model without start-up
costs would predict a gradual decline in output as the price of carbon increases.
This reflects the gradual increase in the number of periods in which prices are
below marginal cost where the firm chooses not to operate. A dynamic model,
on the other hand, shows that the firm is much less responsive to carbon prices
when prices are low. The firm finds it optimal to continue operating as usual,
despite incurring losses in some periods, in order to avoid the costs of starting

2Wind farms, which are on shore, have the highest output during times of off-peak demand
and have little output during high demand periods. Wind power thus reshapes the residual
demand curve by increasing the difference in demand between on and off peak periods. Wind
farms which are built offshore will have the opposite effect of residual demand since the wind
usually blows off shore during peak demand periods when energy is most needed.

3The graph shows the aggregate expected output over a three month period of a Texas,
coal-fired power plant at different levels of carbon prices with a $150,000 start-up cost. For
this illustration, the plant faces the baseline wholesale electricity price at each carbon price
rather than the equilibrium price path that would exist if all firms had to pay for carbon
emissions. Thus the output reduction in response to carbon prices in the diagram is much
more dramatic than the output reduction that would exist in equilibrium.
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up and shutting down. However, at some critical point, the firm switches to
rarely operating. Thus, depending on the price of carbon emissions, a simple
static model may over- or under estimate the impact of carbon regulation on
output and profitability. However, it is important to note that this simulation
holds fixed electricity prices. Equilibrium prices under a carbon price may either
mitigate or exacerbate the behavior shown here.

The model builds on John Rust (1987) to estimate generator-specific dis-
tributions of start-up costs using a detailed dataset on generator output and
energy prices. These start-up costs are then used to simulate outcomes under
alternative policy environments. A central contribution of the paper is showing
that the optimal policies of dynamically-optimizing single agents in the model
can be aggregated together to solve for new price equilibria. In each counter-
factual equilibrium, the market clears in each period and firms’ expectations for
price are consistent with the distribution of prices in the new equilibrium.

Using this new framework, the model is solved under two potential policy
environments: 1) putting an explicit price on carbon and 2) increasing the
number of wind farms. The results show that short-run emissions reductions
from pricing carbon are negligible for modest carbon dioxide prices of $20/ton.
Introducing more wind power into the grid has a much more immediate effect on
emissions reductions; boosting the share of wind power from 2% to 10% results
in a 6% reduction in carbon dioxide emissions.

I also find that counterfactual emission reductions are not dramatically dif-
ferent when comparing the results from the dynamic model with a static for-
mulation. However, a static model substantially underestimates price volatility
and overestimates the profitability of renewables. Higher price volatility in the
dynamic model means lower prices for wind farms when they are most produc-
tive.

The results reflect the short-run response of the electricity industry to envi-
ronmental policies. They do not include any emissions reduction from invest-
ments in new generating technologies that may occur in the long run. However,
properly characterizing the short-run equilibrium is critical for understanding
how regulation will shape investment in the future. Firms’ profits are deter-
mined by the day-to-day operation of generators and their competitive inter-
action. Modeling short-run changes to profitability due to environmental reg-
ulation is an important first step to understanding the long-run investment
response. Also, even though investment in new facilities is outside of the scope
of the model, ”exit” by firms can occur when, given the new equilibrium prices,
firms choose not to operate indefinitely.

Identifying the immediate impact of environmental policies is also valuable
in and of itself. For example, understanding the emissions response in the near
future sets appropriate expectations for regulators and policy makers. Even
though economists extol the virtues of market-based instruments, regulators
are often hesitant to implement regulations with uncertain emission benefits.
Properly characterizing the short-run response to market-based policies can re-
duce regulator uncertainty. Also, the lag time for investment in this industry
is significant. Efficient combined cycle power plants take three or more years
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Figure 1: STATIC AND DYNAMIC RESPONSE TO CARBON PRICING
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to build, not including the time spent in the permitting process. New nuclear
facilities construction times are six to eight years. With the lengthy permitting
process, time to build can extend well past a decade (Kehlhofer et al. 2009)
(AEP 2014) (NEA n.d.). On the other hand, existing infrastructure, such as
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Figure 2: Emission Response to Carbon Pricing
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coal plants with large sunk costs, but relatively low costs going forward, may
continue operating for some time. Thus, understanding equilibrium outcomes
given existing generator infrastructure will be important for years to come.

Relatively little attention has been paid to dynamic considerations in elec-
tricity markets with most work adopting static formulations for production and
profits. There are several notable exceptions. First, work by Mansur (2008)
highlights the importance of dynamics when gauging the competitiveness of
electricity markets. Using a reduced form model, Mansur finds that ignoring
dynamics substantially overestimates welfare losses associated with deregula-
tion of the market. Second, a forthcoming paper by Reguant (2012) evaluates
the welfare effects of allowing firms to use complex bids to better reflect their
start-up costs. She estimates start-up costs using detailed generator-level bid
information in a finite-horizon dynamic model. She finds that more complicated
bidding structures do not increase the use of market power, but do lead to in-
creased productive efficiency. In this paper, I extend the literature by developing
an infinite-horizon dynamic framework that can both estimate adjustment costs
and solve for counterfactual equilibria using readily available data. I apply the
model to a regional electricity grid to simulate dynamic industry response to
environmental regulation.

This model has several advantages over reduced form or engineering ap-
proaches to analyzing counterfactual outcomes in the electricity industry. Since
the model explicitly solves each generator’s dynamic problem, it is possible to
simulate equilibrium outcomes that are very different from observed equilibrium
outcomes. In contrast, reduced form approaches are not able to effectively deal
with counterfactual equilibria which are too far out of sample. Since we do
not observe carbon prices or high levels of wind power, we need a structural
model to simulate these counterfactual scenarios4. Second, the structural ap-
proach is more appropriate for simulating situations with increasingly volatile
equilibrium prices. The reduced form approach cannot handle such situations
since the firms’ reactions are known only for the observed level of volatility in
the market. As prices become increasingly volatile, startup costs will become
increasingly important for understanding firm behaviour. Highly volatile prices
favor flexible, low-startup-cost generators which can exploit price spikes while
avoiding low price periods. Inflexible generators will have to decide whether to
ride out the price swings, or stay out of the market. If uncertainty increases in
step with volatility, then the option value created by uncertainty will also af-
fect the behaviour of generators differentially depending on their startup costs.
The structural model explicitly incorporates uncertainty and option values into
the firm’s decision that are typically not incorporated into engineering planning
models. Of course, a structural approach is not without its downside. Explic-
ity assumptions must be made regarding firm profits, beliefs, and the nature of
competition. In addition, there is significant computational overhead associated
with estimating and solving a dynamic, structural model.

4In the absence off carbon prices, recent work by Cullen & Mansur (2014) has used the
unprecedented drop in natural gas prices in a reduced form model as a proxy for pricing
carbon.
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The rest of the paper proceeds as follows. In sections 2 and 3, I describe
the necessary details of the market and the data used for estimation. Then
in section 4 the model is presented. Sections 5 and 6 detail the estimation of
start-up costs. Finally, in section 7, the estimated parameters are used to solve
for counterfactual equilibrium under different carbon prices and levels of wind
penetration.

1 Electricity Market

This paper uses the Texas grid, which is managed by the Electricity Reliability
Council of Texas (ERCOT), as a laboratory for the analysis. Before presenting
the model, it is useful to understand the basic characteristics of power systems
and the institutional details of ERCOT that motivate the modeling approach.

1.1 Power System Basics

Electricity is an unusual commodity in several ways. First, demand for electric-
ity is almost perfectly inelastic in the short-run; very few consumers of electricity
are willing or able to adjust consumption in response to changing market con-
ditions. Second, the quantity of electricity demanded at a given price varies
cyclically over the course of a day and throughout the year. Peak demand can
be twice that of of-peak periods within the same day. Finally, electricity is
unusual because it cannot be stored in meaningful quantities5. Electricity pro-
duction and consumption on a grid must be balanced on a second-by-second
basis. If more power is being consumed than is being produced, then the re-
liability of the grid is threatened. Sufficient imbalances result in brownouts
(dropping electrical frequency) or blackouts (complete loss of electrical service).
Given that short-run demand is inelastic and highly variable, the lack of energy
storage puts high demands on generators to preserve the reliability of the grid
by adjusting output to follow changing demand.

As generators follow demand, they face several output constraints. First,
generators are capacity constrained. The maximum output capability of a gen-
erator is determined at the time of its construction and generally remains fixed
over its life. Generators also face minimum output constraints. The minimum
output constraint is the lowest level of sustained output the firm can generate
without shutting down. Operating below the minimum output level results in
large inefficiencies and can damage generating equipment.

Generators also face costly adjustments to output. Foremost among these
are start-up costs. Start-up costs are incurred when bringing a generator online
after a period of zero production. Bringing the generator online requires fuel

5Chemical storage of electricity in conventional batteries is too costly to be used to store
any meaningful amount of electricity in a system. Technologies do exist to turn electrical
energy into potential mechanical energy which is storable such as compressed air or pumped
hydro electrical storage. These technologies do make minor contributions on some grids,but
such technologies have not been implemented on the electrical grid in this study.

7



to heat up equipment and bring the turbine up to speed as well as additional
labor to supervise the process. In addition, start-ups are hard on equipment
leading to increased maintenance costs in the long run. In fact, engineering
studies estimate that wear and tear on generating equipment may account for
the majority of start-up costs (Chow et al. 2002).

Start-up costs vary widely by generation technology and the age of the unit.
For example, gas combustion turbines have lower start-up costs than coal fired
steam plants. Likewise, large plants will have higher start-up costs than smaller
generators even though they may use the same technology. Also, as generators
age, they degrade in efficiency which will increase start-up costs.

The costs associated with starting up generators are significant. Engineering
estimates of start-up costs range from hundreds of dollars to hundreds of thou-
sands of dollars per start depending on the size and technology of the generator.
Consequently, a generator with high start-up costs may continue to run during
low price periods to avoid start-up costs. Likewise, a generator may not start
up even though prices exceed its marginal cost of production if it believes that
the profits will not be sufficient to cover its start-up costs.

Concrete information on start-up costs is generally unavailable to researchers
and policy makers. The information is considered proprietary and thus is not
made publicly available. In addition, there may be substantial non-engineering
costs that would be left out of an engineering cost model. This paper provides
a method to estimate start-up costs given publicly available information.

1.2 ERCOT

ERCOT operates as a deregulated electricity market which serves most of the
state of Texas. It operates almost independently of other power grids, with
very few connections to outside markets. Electricity generation and retailing
are deregulated, while the transmission and distribution of energy remains reg-
ulated to ensure that competitors in the generation and retailing markets have
open access to buy and sell power. Unlike many regulated and even restruc-
tured markets, companies in this market are vertically separated. There are no
vertically integrated firms that control generating, transmitting, and retailing
resources.

1.2.1 Generators

There are approximately 500 generators owned by 80 firms which supply elec-
tricity in ERCOT. The ownership of facilities is fairly diffuse, as shown in table
1. The two largest firms account for 24% and 16% of total capacity, respec-
tively, with the residual dispersed among many smaller firms. Major generation
technologies include coal, nuclear, natural gas, and wind power, with very little
hydropower.

Each generator sells its energy to buyers either through bilateral contracts
or through ERCOT’s real-time spot market called the Balancing Market. Ap-
proximately 95% of energy produced is sold through bilateral contracts. The
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Table 1: Ownership Shares

Owner Capacity Share

TXU Generation LLP 17720 24%
Texas Genco II 12301 16%
City Public Service San Antonio 4301 6%
Austin Energy 3523 5%
ExTex LaPorte 2404 3%
Lower Colorado River Authority 1911 3%
Other firms < 2% share 31748 43%

remaining 5% is allocated through the Balancing Market. In general, firms are
not required to meet their bilateral energy contracts using their own generators.
Instead they can buy power in the Balancing Market. Likewise, any available
excess capacity is easily bid into the Balancing Market. Due to this operational
flexibility, the Balancing Market price represents a generator’s opportunity cost
of production. Further details on the market mechanisms in ERCOT can be
found in Appendix C.

Balancing Energy prices can be quite volatile as shown in figure 3. The
three lines show representative hourly price paths with daily variation in the
25th, 50th, 75th percentiles of price variance for 2006. All three days exhibit
higher prices during peak demand periods; the highest variance price path shown
has peak prices that are twenty times that of off-peak periods.

1.2.2 Transmission Congestion

Most of the time ERCOT operates as a single market with a single spot price
for wholesale electricity6. In these uncongested periods, ERCOT does not dif-
ferentiate between remote generators, which make extensive use of transmission
lines, and those which are located in close proximity to demand. During pe-
riods when transmission congestion does arise, the grid is split geographically
into zone specific markets each with their own spot prices. For example, zones
that are net importers of electricity would see higher prices in order to spur
local production while exporting zones would see lower prices in order to re-
lieve demands placed on inter-zonal transmission lines. In this way, interzonal
congestion is relieved through pricing mechanisms in the Balancing Market.

1.2.3 Demand

As in most electricity markets, demand in ERCOT does not respond directly to
wholesale price signals. Residential and commercial users purchase electricity
at fixed prices which are constant for period of time ranging from one month
to several years. As such, they have no incentive to reduce consumption during

6A single price prevailed in ERCOT in 98.5% of the hours in 2006.
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Figure 3: Representative Daily Price Variation by Percentile
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high price periods in the wholesale markets7. Over a longer period of time, if
average prices in the wholesale markets rise, this information will eventually be
passed along to consumers in the form of higher retail rates. However, in the
short run demand for electricity is inelastic.

1.2.4 Comparison with other markets

Electricity markets are complex and highly idiosyncratic. Although each elec-
tricity grid has its own unique mix of generators and market rules, it is useful to
place Texas within the larger context of US and European electricity markets.
Table 2 compares share of demand by consumer type while tables 3 and 5 com-
pare electricity generating capacity and electricity production in Texas with the
US as a whole, Europe and the world.

First on the demand side, the share of demand by residential, commercial and
industrial customers in Texas is similar to the US and Europe, but slightly more
industrial focused. With 68% of demand coming from industrial customers,
Texas is more similar to world wide demand shares than to the US or Europe.
In commercial demand, Texas demand share lies in between that of US and
Europe, but has a residential market share is that below both.

Table 2: Share of Demand by Customer Type

Fuel Types Texas US Europe World
Residential 17 24 27 19
Commercial 15 19 13 11
Industrial 68 57 60 70

Total 100 100 100 100

On the supply side, Texas represents just a little over 10% of all generating
capacity in the US. However, nearly all of its capacity, 91%, uses fossil fuel as
an energy source. It has limited amounts of nuclear and renewable capacity.
Texas has negligible hydroelectric capacity; nearly all of its renewable capacity
comes from wind turbines. The US as a whole relies less on fossil fuel generators
(77%) due to higher shares of nuclear and hydro capacity. Europe is even less
fossil fuel dependent (53%) with even higher shares of renewables and nuclear.

When looking at fuel types within fossil fuel capacity, Europe and the US
have roughly similar mixes, as shown in table 4. Texas has almost no liquid

7Some large industrial consumers do curtail electricity use when reserve capacity becomes
short, but they do not directly respond to fluctuations in the price of electricity in the wholesale
market. These large industrial users negotiate lower energy prices by agreeing to have their
supply of electricity temporarily interrupted in emergency situations when generating reserves
on the grid reach critical levels. Industrial users with interruptible loads are called Loads
Acting As Resources (LaaRs). In the event of an unexpected change in load, electricity delivery
to the LaaR will be interrupted to maintain the frequency on the grid. Approximately half of
responsive reserve services are supplied by LaaRs (MF7). Again, it is important to note that
LaaRs respond to events that threaten the reliability of the grid, not to price changes in the
wholesale market.
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petroleum generators, but has a larger share of gas capacity and a smaller
share of coal capacity. Texas’ large gas capacity implies that most, if not all,
generation could be provided by less polluting gas fired power plants. This will
be important to keep in mind when viewing the counterfactual results.

Table 3: Percent Capacity by Fuel

Fuel Types Texas US Europe World
Fossil 91 77 53 67

Nuclear 5 10 16 9
Hydro 1 8 17 19

Renewable 3 5 14 6
Total 100 100 100 100

Table 4: Percent Fossil Capacity by Fuel

Fuel Types Texas US Europe World
Coal 22 41 47 48
Gas 78 43 41 38

Liquids <1 16 12 14
Total 100 100 100 100

When looking at electricity production rather than capacity, we see that
Texas production largely comes from fossil fuel facilities. Nuclear and renew-
ables provide 13% of production with residual 87% coming from fossil fuels.
This is higher than the US fossil share of 71% and much higher than Europe’s
53% production share. Again the difference comes primarily from the lack of
hydro power and the limited nuclear facilities in Texas.

More importantly, Texas has a cleaner energy mix within fossil fuels than
either the US or Europe, as shown in table 6. Only 43% of its fossil power comes
from coal, compared with 54% in Europe and 70% in the US. The remaining
57% of fossil fuel generated electricity in Texas comes from natural gas. This
compares with 39% in Europe and 28% in the US as a whole.

Table 5: Percent Production by Fuel

Fuel Types Texas US Europe World
Fossil 87 71 53 66
Hydro <1 7 14 17

Renewable 3 3 5 2
Nuclear 10 20 27 15
Total 100 100 100 100
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Table 6: Percent Fossil Production by Fuel

Fuel Types Texas US Europe World
Coal 43 70 54 61
Gas 57 28 39 31

Liquids <1 2 7 8
Total 100 100 100 100

These comparisons have implications for how the Texas response to environ-
mental regulation may differ from that of other grids. First, since Texas already
produces a larger share of its electricity from cleaner gas fired facilities, the
maximum possible percentage change in emissions may be lower in Texas than
in other electricity generating areas where the fossil generating mix is more coal
based. Second, Texas may be more likely to achieve its maximum possible re-
duction, or may achieve it sooner, due to the availability of gas fired generating
capacity. Despite the differences between Texas and the rest of the world, the
dynamic incentives and constraints that generators face when operating remain
largely the same. Generators in Texas and elsewhere will face increasing costs
and price volatility as the result of environmental regulation.

2 Data

The data used for estimation span the period May 1, 2006 to August 31, 2006.
Over this time frame, the output of each generator is observed every hour. The
zone-specific market clearing price for Balancing energy is also observed hourly8.
Other generator-level characteristics include the maximum and minimum output
capability for each generator, the age of the generator, outage status, fuel type
and its location.

These data are supplemented with information from the Environmental Pro-
tection Agency (EPA) and the Energy Information Administration (EIA) on
generator heat rates and emission rates. A generator’s heat rate measures its
productive efficiency in terms of the heat input from fuel necessary to produce
1 MWh of electricity. Emission rates measure the average quantity of the SO2,
NOx, and CO2 emitted per MWh of output. Additional information on the cost
of fuels and pollution permits are collected from the EIA, EPA and ICE9.

8Output and price data are available at fifteen-minute intervals, but data at the hourly
level are used in this study. This approach is taken for two reasons. First, very few generators
have the technical ability to turn on or off within a fifteen-minute period. Thus, although one
may observe a high price this period, a generator may not be able to respond to that price.
Looking at the hourly prices averages out some of the noise introduced by temporary price
spikes. Second, averaging over an hourly period more closely matches the scheduling decisions
of firms, which are submited at the hourly level.

9For fuel costs for coal plants, monthly data is collected from EIA form 423 which gives the
delivered quantity and cost of fuel for coal in Texas. The quantity-weighted average coal price
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The data are used to construct the marginal cost of electricity production,
which is the marginal cost of fuel plus the marginal costs for emissions for each
generator.

MCi = FuelCost ∗HeatRatei + SO2Cost ∗SO2Ratei + NOxCost ∗NOxRatei

Since the observed outage status of the generators is observed, any period
when the generator is offline due to an emergency outage is excluded from the
sample. There are no planned outages observed in the data. When generators
have scheduled or emergency maintenance, their operating decisions are not
motivated by market prices. Since generators on outage cannot start up, failing
to exclude outages would bias the estimates of start-up costs.

Examining the statistics on the operating status of generators reveals some
interesting patterns in the data. Table 7 shows the percentage of operating
periods by technology for the generators used in the estimating sample. The
technologies are ordered in the table in terms of decreasing marginal cost for
the typical generator of that technology. Gas turbines (GT) are the most costly
generating technology while coal generators are the least costly; steam gas (ST)
and combined cycle gas (CC) lie in the middle. In the first column we find, as we
might expect, that higher cost technologies operate less frequently than lower
cost technologies. This is driven by the fact that the higher cost generators
face profitable market conditions less frequently than lower cost generators. For
example, GT generators see prices exceed their marginal costs in only 13% of
the periods as shown in the second column.

More interesting patterns emerge when looking at the intersection of oper-
ating choice and market conditions. We find that generators are losing money
in many of the periods in which they are operating. For example, gas CC gen-
erators operate 72% of the time. However, in only 40% of periods are they
both operating and covering their costs as shown in column three. This implies
that in 32% of periods they are choosing to operate when price is less than
their marginal costs. Likewise there are many periods when price exceeds the
static production costs of the generator, but firms choose not to operate. In
5% of periods gas CC generators observe prices above their marginal costs, but
do not operate. These behaviours are clearly not consistent with static profit
maximization. Explaining these patterns in the data is the motivation for the
dynamic analysis.

The data do have some limitations. First, the electricity prices used in the
model are not necessarily the prices the firm received for its output since most
energy in this market is sold via bilateral contracts with unobserved prices.
However, as previously discussed, spot prices do represent the opportunity cost
of production for the firm. A firm can always shut down production and fulfill its

as the price for coal for all generators in the market for that month is used as the monthly
coal price. For the cost of fuel for gas powered plants, the average spot prices for natural
gas transactions on the Intercontinental Exchange (ICE) are used to create a monthly price
index. For pollution permits, prices are collected from EPA auctions for both SO2 and NOx

permits in 2006. Carbon dioxide is currently unregulated so there is no cost associated with
CO2 emissions.
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Table 7: Operating Percentage by Technology and Market Conditions

On and Off and
Technology On P≥ MC P≥ MC P≥MC
Gas GT 7.7 13.3 3.6 9.7
Gas ST 36 18 13 5
Gas CC 72 45 40 5
Coal 100 96 96 0

contract by buying power in the balancing market. Market analysis by ERCOT
also suggests that forward contract prices for energy follow balancing price quite
closely(Potomac 2007).

Second, some generators are paid to provide ancillary services for the mar-
ket such as regulation, capacity reserve, or out-of-merit-order energy. These
generators respond to price signals that are not observed. For example, par-
ticular generators may be called on to produce electricity in order to alleviate
local congestion, even though the prevailing price for electricity would not merit
production. Although data is not available on these deployments, conversations
with operators indicate that such deployments are unpredictable and do not
account for a large share of generation.

3 Model

The model builds off of the work of Rust (1987) in single agent dynamics to
estimate start-up costs. Once startup costs are estimated, the model is used
to solve for counterfactual competitive equilibria. In the model, the decision
maker is a firm deciding when to operate or shutdown its generator.

In this competitive model, firms are assumed to be price takers. That is, they
take prices in the market as exogenously given; they do not think strategically
about manipulating the price for electricity with their operation decisions.

Price taking is not an innocuous assumption, especially considering the ac-
tive literature on the exercise of market power in electricity markets (Severin
Borenstein, James B. Bushnell & Frank A. Wolak 2002), (Mansur 2008), (Ali
Hortacsu & Steven L. Puller 2008). There are several conditions specific to
ERCOT that make this assumption more plausible, though not unassailable.
First, ownership rules limit a firm’s ownership of generation facilities to 20% of
the total generation capacity in any zone10. Second, most of the energy is sold
via bilateral contracts. Since most of the energy is not sold at the spot price,
this reduces the incentives for a firm to withhold production to increase the en-
ergy price in the spot market if it were to exercise market power(Wolak 2000),

10This rule does seem to be violated for one incumbent utility, TXU, which has several
smaller companies that appear to be owned by a single holding company. It is not clear to
what degree the companies are considered separate entities. The total capacity share for the
holding company is 24%, though each smaller company has capacity shares much smaller than
that.
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(Bushnell, Mansur & Saravia 2008). That said, price taking is an important
and possibly restrictive simplifying assumption of the model.

Price taking allows the firm’s decision problem to be modeled as a single-
agent dynamic problem, rather than as a more complex, dynamic game. Solving
for counterfactual equilibria, in a dynamic game with many strategic players
would be computationally infeasible. Price taking also renders the ownership of
power plants irrelevant11. Thus in a competitive market, each generator on the
grid can be thought as a separate firm maximizing its own profit, regardless of
ownership status. Accordingly, the terms ”generator” and ”firm” will be used
interchangeably throughout the paper.

As is standard in the literature on electricity markets, marginal costs are
assumed to be constant and known. The heat rate of generators, though not
entirely constant, is relatively flat within the operating range of the genera-
tor. Accurate date on heat rates, fuel costs, and emissions prices allow the
marginal cost to be calculated rather than estimated. There are components
of the marginal cost that are left out of the standard calculation. These in-
clude transmission costs or other variable input costs such as water for steam
plants. However, these deviations from the standard assumption are likely to
be of second order importance.

I also assume that firms are not constrained by local transmission bottlenecks
when optimizing with respect to price. This still allows for the primary paths of
congestion, namely congestion between zones, to be represented by the model
since this type of congestion is alleviated in ERCOT via price mechanisms.
However, this assumption does rule out congestion within a zone. Due to data
limitations, the model cannot account for local congestion directly.

Although the model incorporates costly output adjustment through startup
cost, it abstracts away from adjustment costs if a generator is already operating.
That is, it is assumed that a generator can costlessly adjust output within its
operating range. In practice, all generators in the model have the technical
capability of moving between their minimum and maximum operating levels in
5-10 minutes with a few needing as long as 20 minutes to make the move. With
this assumption, the generator’s decision collapses from a continuous choice of
output level to a discrete choice of whether to operate or not.

Given these assumptions, each generator is modeled as a single firm with
the following dynamic problem. In each period, the firm observes the price in
the market and the hour of the day. The firm can take one of two actions which
are notated as:

ait =

{
1 if operate in t
0 if not operate in t

(1)

where i indexes the generator
t indexes each hourly period

11Consider a generator with a set of cost characteristics. Given beliefs over the future path
of prices, there is only one optimal way to operate the facility. Any rational firm in the market
would operate the generator in exactly the same profit-maximizing way. This is not the case
when firms can exercise market power. Each firm would use the characteristics of their entire
generator portfolio to optimally exercise market power.
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If the firm decides to operate, the firm’s output will be decided by the market
price. If the price in the market is greater than the firm’s marginal cost, then
it will produce at maximum capacity. If the price is below marginal cost, then
the firm will produce at its minimum possible level. If the price is equal to
the firm’s marginal cost, the firm may operate at any point along its operating
range.

qit = max if Pt ≥ ci and ait = 1
qit = min if Pt < ci and ait = 1

(2)

where ci = constant marginal cost of generator i
Pt = price for electricity in the generator’s zone

Each period when the firm is operating, its profits are simply the price-cost
differential earned on every unit produced minus any start-up costs associated
with operating. The per period profit function for the generator is then:

Π(Pt, qit, ait) =






(Pt − ci)qit if ait = 1 and Lit = 1
(Pt − ci)qit − STARTi if ait = 1 and Lit = 0
0 if ait = 0

(3)

where STARTi = cost of starting up generator i
Lit = ait−1 = the lagged operating state

No profit is earned when the generator is not operating. A start-up cost
is incurred only if the firm decides to operate, but was not operating last pe-
riod (Lit = 0). The structural parameters of the model are ci and STARTi.
The constant marginal cost of production, ci, is calculated from the generator
heat rate, fuel prices, and emission costs as previously discussed. The structural
parameter STARTi is not known and will be the object of the estimation proce-
dure. For notation simplicity, the i subscript will be dropped for the remainder
of the paper since each generator is always modeled separately as a single agent.

In the dynamic model, the firm’s expectations over future prices must be
explicitly modeled. Prices are assumed to follow a conditional AR(1) Markov
process described by the distribution F (Pt|Pt−1, Ht−1) where Ht is an indicator
for each hour of the day. Note that because of the price taking assumption, the
evolution of price does not depend on the action of the generator.

One might argue that a simple Markov process is not sufficiently rich to accu-
rately model the expectations of the firm. Indeed, firms have more information
than simply the lagged price and time of day with which to form expectations
for price in the next period. For example, firms may have expectations over
future temperatures, load levels, and congestion. In addition they may use a
long price history when predicting future prices. The extent to which the pro-
posed model for the evolution of price is adequate depends on the degree to
which lagged price summarizes all of the other components of the expectations
of price. I investigate the price process in detail after the empirical specification
for price expectations is introduced in section 4.

Given the specification of the transition and the profit function, the state
space for the dynamic problem will be the price, the hour of day, and the lagged
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operating state, (Pt, Ht, Lt). The Bellman equation representing the dynamic
problem can be written as:

V (Pt, Ht, Lt) = max
at∈{0,1}

{Π(Pt, Lt, at) + βE[V (Pt+1, Ht+1, Lt+1|Pt, Ht, Lt)]}

(4)

where Ht+1 = Ht + 1 − 1(Ht = 24) ∗ 24
Lt+1 = at

where the expectation is taken with respect to Pt+1 according to the distri-
bution F (Pt+1|Pt, Ht). The parameter β is a fixed discount factor.

The optimal policy for this dynamic problem is a cutoff rule in Pt for every
pair of (Ht, Lt). This implies that the firm should take same action whenever
it encounters the same state (Pt, Ht, Lt). This creates a problem for estimating
structural parameters from the data as the firm will invariably deviate from what
appears to be the optimal policy. For example, on one day we may observe an
idle generator starting up at a price of $50/MWH and 8:00AM. However, on
another day at the same price and time of day we might find that the generator
does not start up. As is, the model cannot rationalize this behavior.

To address this issue, I allow for a shock each period which affects the de-
cision of the firm to operate. If the firm is not operating, this shock, plus the
start-up cost, can be interpreted as a draw from a distribution of start-up costs
with mean STARTi and variance σ. If the generator is operating, the shock
can be interpreted as a draw from the distribution of exit or shutdown costs.
Since the model will not be able to differentiate between start-up and shutdown
costs, the mean of the exit cost distribution is normalized to 0, but with the
same variance as the start-up cost distribution12.

The shock introduces an additional state variable into the dynamic problem
which is observed to the firm, but unobserved to the econometrician. Techni-
cally, this is implemented as a choice specific shock to profit each period and is
notated as εt(at) ∈ {εt(0), εt(1)}, as in Rust (1987). Like in Rust (1987), the
shock is assumed to be an independent and identically distributed stochastic
process that introduces noise into the underlying decision process. For compu-
tational simplicity, the distribution for εt(0) and εt(1) is assumed to be extreme
value type I. This allows for analytical integration over the unobserved shocks.
Because the level of profit can be calculated for each state, the variance of the
error process can be estimated, unlike in most discrete choice models. Accord-
ingly, the choice-specific shock becomes σεt(at). Let the vector of unknown

12A firm that is considering starting up today, knows that it may shutdown sometime in
the future. Thus it will take into account any shut down cost when it makes its startup
decision. From the firm perspective, the main difference between the two costs is that one
is incurred now and one is incurred later. In principle this implies that the discount factor
could be used to separate the two costs. For example, if the firm discounted the future heavily
enough or if the shutdown decision is expected to be very far in the future, then the impact
of the shutdown cost on the startup decision would be negligible. On the other hand, if the
future is not discounted at all then the firm would realize the full shutdown cost when it made
its startup decision. Since the discount factor in this setting is close to one, I do not try to
separately identify startup and shutdown costs.
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structural parameters be θ = (START, σ). With the unobserved state variable,
the Bellman equation now becomes:

Vθ(Pt, Ht, Lt, εt(at)) = maxat{Π(Pt, Lt, at) + σεt(at)+
βEV (Pt, Ht, Lt, at)}

(5)

where the function

EVθ(Pt, Ht, Lt, at) ≡
∫ ∫ ∫

V (Pt+1, Ht+1, Lt+1, εt+1(at+1)|Pt, Ht, Lt)
dG(εt+1(0)G(εt+1(1))F (Pt+1|Pt, Ht)

(6)

Note that because of the independence assumption, the current draw of
the error does not directly affect the future payoffs; it only affects the future
through its impact on the current choice. Since the value function does not
have an analytic solution, it is solved for a discrete set of values in the state
space13. Also since the econometrician does not observe εt(at), it is convenient
to represent the solution to the value function in terms of choice specific value
functions. Let the function V 1

θ represent the value for the firm of operating
while V 0

θ represents the value for the firm of not operating, both net of the
structural errors. These can be viewed as the value a firm sees from operating
and not operating before realizing the draws of εt(at).

V 0
θ (Pt, Ht, Lt) = Π(Pt, Lt, at = 0) + βEV (Pt, Ht, Lt, at = 0)

V 1
θ (Pt, Ht, Lt) = Π(Pt, Lt, at = 1) + βEV (Pt, Ht, Lt, at = 1)

(7)

The optimal policy of the firm will be to choose the option that gives the
greater value after accounting for the realized draw of the error.

a∗
t (Pt, Ht, Lt, εt(0), εt(1)) = argmaxat

{
V 0

θ (Pt, Ht, Lt) + σεt(0),
V 1

θ (Pt, Ht, Lt) + σεt(1)

}

(8)

The value function then is the value created by making the optimal choice.
This is identical to equation 5 , only written in terms of choice specific value
functions.

Vθ(Pt, Ht, Lt, εt(at)) = maxat

{
V 0

θ (Pt, Ht, Lt) + σεt(0),
V 1

θ (Pt, Ht, Lt) + σεt(1)

}

(9)

Since the econometrician does not observe the error, the optimal policy can be
viewed as a probability that the firm will operate in a given state of the world.

13The states Ht and Lt are already discrete, but Pt must be discretized or at least evaluated
at a discrete set of points. The resulting state space could be quite large depending on how
finely Pt is discretized. The dimension of Ht is 24 since there are 24 operating hours in each
day. The operating state last period, Lt, is a binary outcome. The size of the state space is
then DP ∗ 24 ∗ 2 where DP is the number of discrete prices used. For one hundred discrete
prices, the total size of the state space would be 4,800 which is large, but computationally
feasible.
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As the errors are distributed as extreme value type I, the operating probability
for a generator has the following analytic form.

p(at = 1|Pt, Ht, Lt; θ) =
e

V 1
θ (Pt,Ht,Lt)

σ

e
V 0

θ
(Pt,Ht,Lt)

σ + e
V 1

θ
(Pt,Ht,Lt)

σ

Conditional on a set of parameters, the probability of operation can then be
used to construct a likelihood function for a generator.

L(θ) = Πt=T
t=1 p(at|Pt, Ht, Lt; θ)p(Pt|Pt−1, Ht−1) (10)

Here p(Pt|Pt−1, Ht−1) is derived from the conditional distribution F (Pt+1|Pt, Ht),
which is the probability of transitioning from one discrete price to another given
the interval of the day. It should be noted that p(at|Pt, Ht, Lt; θ) implicitly de-
pends on the transition probability matrix given by p(Pt|Pt−1, Ht−1) through
the solution to the value function.

Since the transition probabilities do not depend on the vector of unknown
parameters θ, they can be flexibly pre-estimated outside of the likelihood func-
tion. The simplified likelihood function can then be written as simply a function
of the operating probability in each period.

L(θ) = Πt=T
t=1 p(at|Pt, Ht, st; θ) (11)

4 Estimation

The vector of unknown structural cost parameters θ = (START, σ) for each
generator is estimated via maximum likelihood. While conceptually straight-
forward, solving for the structural parameters which maximize the likelihood
function can be quite computationally intensive.

4.1 Price Transition

A necessary input for the maximization of the likelihood is a set of price tran-
sition matrices which capture the firm’s expectations about future prices at
any state. Since the price transitions do not depend on the action of the
firm in a price taking model, the transition matrix can be estimated outside
of the likelihood function. Given that the conditional transition probabilities,
p(Pt|Pt−1, Ht−1), depend on both the last period’s price and the hour of the
day, the size of each time-specific matrix depends entirely on how finely price
is discretized. For example, if price were discretized into 100 bins, then each
transition matrix has 10,000 elements. With 24 intervals in each day, this means
that 240,000 conditional probabilities would need to be estimated. The large
number of conditional probabilities renders nonparametric estimation of the
transition matrices infeasible even for very modest levels of price discretization.
Consequently, a semi-parametric method is used to estimate the conditional
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probabilities. I regress next period’s price on a cubic polynomial expansion of
the current price with dummies for each hour of the day.

Pt+1 = β0+β1Pt +β2P
2
t +β2P

3
t +Dα0+PtDα1+P 2

t Dα2+P 3
t Dα3+εt. (12)

where D is a vector of 24 hour of day dummies. The interactions between the
cubic polynomial in prices and the hour of day dummies allow the coefficients
to be completely flexible across each hour of the day. This is important because
the current price for electricity may have different implications for future prices
depending on the time of day. For example, observing $50/MWH at 5:00pm
may mean that prices will be even higher next hour, while the same price late
in the evening may signal that prices can be expected to decrease the following
hour. Since price expectations are a critical component of the firm’s dynamic
programming problem, it is important that the model of beliefs appropriately
captures the dynamic nature of prices. The performance of this specification as a
model of beliefs, as well as robustness of the results to alternative specifications,
is explored in detail in appendix B.

The parameter estimates from the above equation yield E[Pt|Pt−1, Ht−1]14.
To create a conditional distribution around E[Pt], I use the empirical distri-
bution of the residuals from the estimation procedure. The probability matrix
p(Pt|Pt−1, Ht−1) is then created by integrating over the errors for each discrete
price.

4.2 Structural Parameter Estimation

Once the transition matrix is defined, the structural parameters can be esti-
mated using the dynamic model. Models of this type are traditionally estimated
using a nested fixed point method. Typically the dynamic programming prob-
lem is solved using value function iteration while searching over the parameter
space. Alternatively, two-step dynamic estimators can be used with much lower
computational overhead. (V.J. Hotz & R.A. Miller 1993, V. Aguirregabiria &
P. Mira 2002, P Bajari, L Benkard & J Levin 2007). Two-step methods lever-
age the equilibrium observed in the data to estimate the structural parameters.
While this approach would be perfectly appropriate estimating the model, these
estimators do not allow for the computation of counterfactuals. Since counter-
factual computation is a key part of the research question, two-step methods
are not employed.

Applying the nested fixed point method using value function iteration is not
computationally feasible for this model. The solution time for value function
iteration, which uses the contraction mapping property of the Bellman equa-
tion, depends on the discount factor β. As β nears one, the time to convergence

14The parameters are estimated using the observed continuous prices, and then the con-
ditional probabilities are calculated given the number of discrete prices. Alternatively, the
price space could be discretized before estimating the parameters with some loss of precision.
As the number of discrete prices increase, the results would converge to the continuous price
estimates.

21



increases exponentially. Since a generator’s operating choice and price are ob-
served every hour, the discount factor in the model is very close to one rendering
value function iteration impractical15.

Instead, policy function iteration is applied inside the nested fixed point algo-
rithm to solve the dynamic problem and estimate the parameters. Importantly,
the solution time for solving the value function by policy function iteration does
not depend on the discount factor. However this method does require inverting
a potentially large probability matrix, which in some cases may be computation-
ally infeasible. However, this particular application is able to take advantage
of the fact that the transition matrix is quite sparse, reducing the computation
time significantly. Importantly, I can use the same solution method to solve for
counterfactual equilibria later.

Using data from May 2006 through August 2006 is ideal for estimating
startup costs. First, within this period fuel costs are relatively constant. With
fixed fuel costs, they do not enter the state space of the dynamic problem. The
model does not need to explicitly incorporate each firm’s expectations for future
fuel costs by introducing it as a new dimension into the state space. Also, since
it is a relatively short period, other long-run confounders such as demand sea-
sonality, demand growth, or generator capacity additions are not an issue. This
allows for a simple and computational simple state space in which to estimate
structural parameters. At the same time, the variability in prices during this
time period is sufficient to induce the generators to start up and shut down.
Prices need to be high enough in some periods such that high cost generators
startup and also need to be low enough in other time periods such that lower
cost generators shut down.

Finally, by using these months of data, I avoid maintenance periods for gen-
erators. When generators have scheduled maintenance, their hourly operating
decisions are not motivated by price signals. Interpreting maintenance periods
as a reaction to current prices could lead to overestimating start-up costs. Using
a four month time period prevents the model from becoming overly complicated
and allows for relatively clean and simple estimation of the structural startup
cost parameters.

4.3 Identification

The arguments for the identification of the structural parameters are fairly
straightforward. First, the generator’s start up cost is identified by the dif-
ference in the willingness to operate between two states with the same price
and interval, but with a differing operating state last period. Consider the
price/interval combination (Pt = 50, Ht = 20). The start-up cost is identified
by the difference in the firm’s behavior at (Pt = 50, Ht = 20, Lt = 1) versus
(Pt = 50, Ht = 20, Lt = 0). Start-up costs imply that the probability of op-
eration will be higher in the first case. In a world with no start-up costs, the

15If the annual discount rate is 0.95, this translates into a discount factor of approximately
0.9999945 every hour.
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behavior of the firm would be identical when faced with either of those states.
The scale of the variance, σ, of the cost shock is identified by the willingness to
operate in states outside of the cutoff rule implied by the deterministic model.
More extreme or frequent deviations from the cutoff rule imply a higher σ and
thus a wider distribution of start-up and shutdown costs.

The parameters for certain generators will not be identified. In order for
start-up costs to be identified, a generator needs to turn on/off voluntarily in
response to price signals. Some baseload generators, such as nuclear plants
or some coal generators, may only shutdown for scheduled maintenance or an
equipment breakdown. For such generators, start-up costs cannot be point
identified, although a lower bound on start-up costs might be obtained. A lower
bound would be identified by the lowest levels of observed prices under which
the generator continues to operate. This paper does not attempt to bound
start-up costs on baseload generators, but rather uses calibrated parameters for
these generators.

5 Results

The estimation and counterfactual efforts are focused on a representative subset
of the more than three hundred generators in ERCOT. Although the estimation
and counterfactual methods in this paper are feasibly applied to the entire grid,
the primary purpose of this paper is to explore the role of dynamics over a
wide range of possible counterfactual scenarios. Focusing on a representative
subset of generators enables a much wider set of counterfactuals to be explored.
Specifically, parameters are estimated for all generators in ERCOT’s West zone.

The West zone encompasses 22 fossil fuel generators representing all major
technologies and is the smallest of ERCOT’s four congestion zones16. As is
the case for ERCOT as a whole, most generating capacity in this zone is gas
fired and includes both combined cycle and simple cycle gas generators. Table
8 compares the composition of fossil fuel generators in the West zone to the
ERCOT grid as a whole. Overall, the West zone has less coal capacity but more
gas capacity, particulary gas turbine capacity, than ERCOT as a whole. The
West zone looks roughly similar to the rest of the grid in terms of production,
though the West zone still utilizes gas plants more than ERCOT as a whole.
Table 9 shows detailed generator-level characteristics of generators in the West
zone.

The parameters for each generator in the zone are estimated independently17.

16Wind generators are not included in the model since they lack the capability to increase
production in response to price variations. They also do not reduce output during low price
periods since their marginal cost of production is near zero. I also exclude one small hydro-
electric plant for the analysis because it cannot increase aggregate production. Nuclear power
plants are not considered in this paper. With high start-up costs, low marginal costs, and
zero carbon emissions, their operation is unlikely to be changed in counterfactual policies as
they are already operating at maximum capacity.

17There is one exception to this rule. In order to model each generator as a single agent,
each needs to be able to react independently to prices. Combined cycle gas generators violate
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Table 8: Grid Generator Characteristics

Capacity Generation
Technology West All Texas West All Texas

Gas GT 22% 9% 2% 3%
Gas ST 30% 28% 11% 8%
Gas CC 34% 40% 54% 44%
Coal 14% 23% 33% 45%

Table 9: Generator Characteristics: West Zone

Max Min Capacity Generation
Name Fuel Type (MW) (MW) Share Share

Calenergy Gas CC 212 84 4.4% 5.3%
Graham 1 Gas ST 229 46 4.8% 1.4%
Graham 2 Gas ST 377 26 7.8% 3.2%
Morgan Creek 5 Gas ST 127 15 2.6% 0.1%
Morgan Creek 6 Gas ST 450 90 9.4% 0.0%
Morgan Creek A Gas GT 83 30 1.7% 0.2%
Morgan Creek B Gas GT 85 30 1.8% 0.1%
Morgan Creek C Gas GT 83 30 1.7% 0.1%
Morgan Creek D Gas GT 85 30 1.8% 0.2%
Morgan Creek E Gas GT 83 30 1.7% 0.1%
Morgan Creek F Gas GT 84 30 1.7% 0.1%
Odessa-Ector Gas CC 960 145 20.5% 44.2%
Oklaunion 1 Coal ST 630 312 13.1% 34.3%
Permian Basin 5 Gas ST 116 7 2.4% 0.5%
Permian Basin 6 Gas ST 492 45 10.2% 6.1%
Permian Basin A Gas GT 65 40 1.4% 0.2%
Permian Basin B Gas GT 65 40 1.4% 0.3%
Permian Basin C Gas GT 65 40 1.4% 0.2%
Permian Basin D Gas GT 65 40 1.4% 0.2%
Permian Basin E Gas GT 65 40 1.4% 0.1%
Sweetwater Gas CC 266 173 4.8% 2.6%
Wichita Falls Gas CC 75 22 1.6% 0.6%
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Table 10 shows the estimates of start-up costs for all but two generators in the
West zone18. The first two columns of the table show the estimated start-up
costs and scale of the operating cost shock for each generator. Standard errors
are shown in parenthesis below the estimates. The third column indicates what
type of technology is used at the plant.

The estimates of start-up costs are quite significant. The start-up costs
estimated are as low as $26,000 for gas turbines and are as high as $460,000 for
very large combined cycle plants19. A limited number of published studies in
engineering have rigourously measured increased maintenance, decreased plant
life spans, and opportunity costs of forced outages due to start-up and shutdown.
These studies indicate that start-up costs can range from $300-$80,000 for gas
turbines and $15,000-$500,000 for CC/steam gas and coal plants(Phil Besuner &
Steven Lefton 2006). The wide range of possible startup costs underscores that
significant heterogeneity can exists across generators of the same technology.
The estimated startup costs are at the higher end this range. However, they are
higher than estimates of startup costs found in other papers20.

The performance of the model is examined against the data by comparing
the operating state implied by the model with that observed in the data for

this rule since they run multiple turbines in sequence. In a combined cycle plant, a simple
combustion turbine is first used to burn the natural gas. The exhaust of this turbine is used
to heat water which powers a secondary steam turbine. Thus, the operation of the steam
turbine is closely linked to the operation of the combustion turbine. Some plants may have
two or three combustion turbines which all feed a single steam turbine. Such plants can run
in multiple configurations, such as with one or two combustion generators feeding the steam
turbine rather than all three. Since the cost of starting up the steam turbine may be high,
a plant may operate one gas turbine at its minimum capacity to avoid the start-up costs
associated with restarting the steam turbine. If the gas turbine were modeled as a single
agent, this would overstate the start-up cost of this generator. To alleviate this problem, I
aggregate the output of all generators which are part of a combined cycle plant. In doing this
I assume that the economically important start-up costs are incurred when the entire plant
starts production and abstract away for ramping costs associated with the output capacity of
the plant.

18Start-up costs could not be estimated for two of the generators. One coal plant never shut
down during the sample; one gas plant never operated. Since I do not observe start-up or
shutdown decisions for these plants, I cannot obtain a point estimate for their start-up costs.

19The fuel and emission segments of these start-up costs can be separated from other costs
using EPA’s Continuous Emissions Monitoring System (CEMS). The EPA tracks heat input
and emissions output for generators on a continuous basis. Thus, it is possible to calculate
average fuel usage and emissions releases over the period when a generator is starting up. The
data reveal that the cost of fuel and emissions alone range from $500 for small combustion
gas turbines to $55,000 for large gas steam turbines. The residual part of start-up costs must
be attributed to long run maintenance costs or other costs associated with changing output.

20In particular, Reguant (2012) finds average startup costs in the Spanish electricity market
to be around $30,000 USD for both coal plants and combined cycle gas plants. Her model-
ing approach is quite different as it uses bidding data combined with a 5-day finite horizon
dynamic model to estimate both marginal costs and startup costs in a strategic setting. The
standard errors on the estimates are relatively large, especially for the gas plants, due to their
dependence on first stage estimates which have wide standard errors. The author urges cau-
tion in interpreting the point estimates for gas plants in particular. However even looking at
the 95th percentile of the confidence interval of Reguant estimates would only imply a startup
cost of a little more than $100,000 for a combined cycle gas plant. This is still much lower
that the estimates obtained in this paper.

25



each generator and time period. Since the model gives only a probability of
operating, a generator is considered ”operating” for this exercise if the proba-
bility of operating is greater than 50%. Table 11 gives the proportion of periods
where the operating predictions of the model and the observed behavior in the
data are aligned. In only 8% of the periods do the predictions of the dynamic
model differ from the observed behavior. For comparison we can contrast this
with predictions from a static model, which has the same marginal costs for
generators, but no startup cost. Without startup costs, the model predicts that
a generator will operate if and only if the price of electricity is greater than its
marginal cost. Applying the static model to the data shows that the predictions
disagree with the data in 22% of the generator periods. Despite the fact that
the only parameters estimated are start-up costs and the variance of the error,
the dynamic model is able to fit the data reasonably well. I also examine the
out of sample fit of the model, by using the model to predict outcomes in the
month before and the month after the estimating sample21. The results, shown
in table 12, indicate that the predictive power of the model holds even outside of
the sample. Predictions of the dynamic model differ from the observed behavior
only 7% of the time in out of sample periods.

21The same optimal policy function is used to make model predictions in sample and out
of sample. The optimal policy is the solution to the dynamic programming problem at the
estimated parameters with beliefs estimated from the estimating sample.
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Table 10: West Zone Results

Capacity
Unit STARTi σi in MW Type

Calenergy $246,210 $24,965 212 CC
(313,630) (32,232)

Graham 1 $59,727 $10,419 229 ST
(3,871) (686)

Graham 2 $33,297 $6,802 377 ST
(2,337) (429)

Morgan Creek A $36,490 $6,092 83 GT
(4,275) (670)

Morgan Creek B $34,525 $5,733 85 GT
(3,802) (598)

Morgan Creek C $34,325 $5,599 83 GT
(3875) (594)

Morgan Creek D $33,460 $5,632 85 GT
(3,709) (589)

Morgan Creek E $35,056 $5,782 83 GT
(3,890) (607)

Morgan Creek F $36,767 $6,064 85 GT
(4,335) (670)

Morgan Creek 5 $61,463 $8,585 127 ST
(5,860) (873)

Morgan Creek 6 — — 512 ST
— —

Odessa $461,330 $67,006 960 CC
(211,420) (28,957)

Oklaunion — — 630 COAL
— —

Permian Basin A $26,456 $4,533 65 GT
(2,221) (389)

Permian Basin B $28,601 $4,925 65 GT
(2,425) (425)

Permian Basin C $30,637 $5,146 65 GT
(2,840) (491)

Permian Basin D $35,802 $5,709 65 GT
(3,570) (589)

Permian Basin E $43,755 $6,409 65 GT
(4,764) (716)

Permian Basin 5 $183,210 $31,178 116 ST
(45,756) (8,031)

Permian Basin 6 $119,520 $21,847 492 ST
(16,079) (3,057)

Sweetwater $56,857 $10,996 226 CC
(5,153) (873)

Witchita $58,006 $10,042 75 CC
(8,118) (1,422)

27



Table 11: Operating State Fit

Data
Model Off Operate

Dynamic
Off 0.66 0.02

Operate 0.06 0.26

Static
Off 0.63 0.13

Operate 0.09 0.15

Table 12: Out of Sample Fit

Data
Time period Off Operate

Month Prior
Off 0.78 0.01

Operate 0.06 0.14

Month After
Off 0.76 0.01

Operate 0.06 0.17
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6 Counterfactual

Given estimated parameters, the structural model can be used to simulate op-
erating decisions for any counterfactual path of prices. In particular, we want
to simulate market behavior with equilibrium market prices that would emerge
under potential environmental policies such as carbon taxes or renewable man-
dates. To do so, we need first to find the path of prices that constitutes an equi-
librium in the electricity market. This section defines the equilibrium conditions
and proposes a method for solving for such counterfactual price equilibria.

6.1 Counterfactual Supply

In this section, I describe how the model is used to construct the supply curve
for any counterfactual price path for a given generator. First, we must create
the price transition matrix characterizing firm’s expectations for future prices
at each possible state. Given the counterfactual price path P, we can construct
the beliefs, f(Pt|Pt−1, Ht−1) , which are consistent with P. Second, we solve
the dynamic programming problem conditional on beliefs. The resulting opti-
mal policy function dictates the optimal operating decision for any state which
could be encountered. This optimal policy is denoted as ait(Pt, Ht, ait−1, εit).
The quantity of electricity supplied at a given state is simply the operating de-
cision multiplied by the quantity produced. Recall, that the quantity produced
depends on the price of electricity and the generator’s marginal cost. The supply
of the generator for any state is then:

sit(Pt, Ht, ait−1, εit) = ait(Pt, Ht, ait−1, εit)qit(Pt) ∀t ∈ {1, 2, ..., T } (13)

While Pt and Ht are fixed for a given counterfactual price path, εit and ait−1 are
ex-ante unknown. To determine the operating decision of the generator in each
period, we need to know both of these values. Since the error is never observed,
we need to draw from the distribution of the error for the generator in each time
period. Finally, once the error is known, we can calculate optimal decision in
the first period (ai1) using an initial condition (ai0). The optimal decision in
subsequent time periods can then be determined by using the lagged operating
decision in the previous time period. By solving forward in this manner we can
determine the supply of the generator in each time period for the counterfac-
tual price path P. However, the decision of the generator will be specific to the
particular sequence of draws of the errors used. It is relatively simple though
to repeat the process using a new sequence of errors. The dynamic program-
ming problem does not need to be resolved since the distribution of the errors
and of the counterfactual price path have remained unchanged. Rather, the
same optimal policy can be reseeded with new errors and solved forward in the
same manner as before. In this way it is possible to simulate many potential
decision sequences for the same generator without incurring a large computa-
tional penalty. In the counterfactuals presented later, I simulate one hundred
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markets, each with unique, generator-specific draws for the errors and report
average outcomes over markets.

The industry supply in each time period is then simply the sum of all the
generator specific supply functions.

St(Pt, Ht, at−1, εt) =
N∑

i=1

sit(Pt, Ht, ait−1, εit) (14)

It is important to note that the generator supply function, and thus the
industry supply function, is not smooth or continuous in Pt. It is not smooth
since it is a step function with steps at the firm’s startup point and marginal
cost. The generator will produce nothing until it starts up, at which point it will
produce at least at its minimum level. Likewise, it will move from producing
at its minimum level to its maximum level when price exceeds marginal cost.
Only when price equals marginal cost, will the generator produce in between its
maximum and minimum output level. The supply functions are not continuous
since the firm cannot produce below its minimum output level. This leaves a
gap in the supply function between the zero and minimum output level. Both
of these characteristics will need to be taken into consideration when solving for
a market equilibrium.

6.2 Counterfactual Demand

For the counterfactual simulations, a model of demand for electricity is needed.
Rather than estimate a demand side model, a simple demand function is cali-
brated with parameters taken from the literature. Counterfactual price equilib-
ria will be calculated using both an inelastic demand function and a calibrated
demand curve which reflects the long-run response of consumers to electricity
prices.

In the very short run, the demand for electricity is almost perfectly inelastic.
This is because consumers of electricity generally face constant prices for elec-
tricity over some time horizon, ranging from one month to several years, which
are invariant to changes in wholesale prices of electricity. Thus, consumers gen-
erally have no incentive, or even available information, to change consumption
as wholesale prices change. This demand function highlights the ability of the
supply side to reduce emissions in response to environmental regulation in the
counterfactual simulations. It is also the demand side model that, from a con-
ceptual view, is most consistent with the short run supply side model which
holds generating capital fixed.

Although inelastic demand is a realistic assumption for the very short run,
it will not fully capture the new market equilibrium which will determine the
profitability for different technologies going forward. Even though consumers
do not respond immediately to wholesale price changes, changes in the average
wholesale price for electricity will eventually filter down to the prices consumers
face. The long-run response of consumers to average electricity prices is char-
acterized by a constant elasticity demand function with a calibrated elasticity
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parameter. In particular, it is assumed that demand in each period is charac-
terized by Dt = Kt ∗ pα

c where Dt is the observed hourly demand for electricity
in time period t, pc is the average price consumers face for electricity, α is the
demand elasticity parameter, and Kt is a positive constant. It is assumed that
consumers face the average wholesale price for electricity over the simulation pe-
riod. The long literature on electricity demand reports a wide range of demand
elasticities depending on the time horizon22. However, many studies identify
the long-run elasticity for electricity demand to be somewhere around α = −0.7
(Bohi 1981)(Espey & Espey 2004)(EIA 2008)

Using a longer-run demand elasticity is somewhat inconsistent with the sup-
ply model since the model assumes that the supply side is not able to adjust its
capital; this implies that consumers can change capital much more quickly than
electricity generators. However, just as inelastic demand gives a lower bound
on short-run emissions reductions, long-run demand provides an upper bound
on the emissions reductions that could be achieved by environmental policies
holding electricity generating capital constant.

6.3 Counterfactual Equilibria

The equilibrium in the model is defined by a price vector P that equates ag-
gregate supply from the model with demand in each period. In addition, the
firms’ expectations for prices at each state are required to be consistent with
distribution of equilibrium prices. Appendix D shows that there exists a unique
market clearing price vector conditional on beliefs and discusses the existence of
the equilibrium. Unlike general equilibrium price taking models, such as Hugo
Hopenhayn & Richard Rogerson (1993), where the stationary equilibrium price
is the same in each time period, here the equilibrium prices remain uncertain
and fluctuate each period due to aggregate demand shocks. However, the equi-
librium is stationary in the sense that for a given state, firms expect the same
distribution for future prices regardless of how they arrived at that state.

In short, a candidate price path will be an equilibrium price path if:

1. Each firm is acting optimally with respect to its price expectations.

2. The equilibrium prices clear the market in each period.

3. Firms’ expectations for prices are consistent with equilibrium price path.

22Dynamics exist on the demand side which limit consumers’ response to price changes in
the medium run versus the long run. Just as owners of SUVs are temporarily ”locked in”
to a higher gas usage even as the prices of gasoline rise, consumers of electricity must make
costly adjustments to capital in order to fully optimize with respect to prices. Purchasing
more efficient appliances, upgrading heating/cooling systems, or insulating a home will allow
consumers to reduce consumption more in the long run than in the short run given higher
electricity prices.

31



6.4 Algorithm

In this section, I delineate the algorithm used to solve for the equlibirum in
each counterfactual. Since realizations of the errors are necessary to calculate
generator outcomes, I solve for equilibrium outcomes in one hundred simulated
markets simultaneously. In each simulated market, I draw a sequence of er-
rors for each generator. Although, the equilibrium in each market is solved
separately, the beliefs are estimated using the distribution of prices in all simu-
lated markets. This allows the beliefs to represent the complete distribution of
equilibrium prices including the variation due to the draws of the errors. Esti-
mating common beliefs for generators in all simulated markets also allows me
to solve the dynamic programming problem just once for each iteration of the
algorithm rather than solving the different dynamic programming problem for
each simulation.

To solve for the equilibrium for a given counterfactual, I use the following
algorithm. Let P 0 be a candidate equilibrium price vector for each simulated
market.

1. Change structural parameters or demand function as determined by the
policy change23.

2. Draw a sequence of errors for each generator for each simulation.

3. Estimate the price transition matrix from the distribution of prices across
all simulations, p(P 0

t |P
0
t−1, Ht−1).

4. Given the price transitions, solve the dynamic programming problem for
each generator.

5. For each simulated market, choose a new path of prices, P ′, starting with
the initial conditions a0, such that supply equals demand in each period,
St(Pt|Ht, at−1, εt) = Dt .

6. Re-calculate Dt given the new average price, E[P ′]. The average price is
taken across all simulated markets.

7. Re-estimate the price transitions p(P ′
t |P

′
t−1, Ht−1).

8. Return to 4 and iterate.

The algorithm reaches an equilibrium for a counterfactual when the price vector
does not change between iterations. At this point, the price vector clears the
market in each period and the firms are optimizing with expectations consistent
with the price vector. It should be noted that convergence with this algorithm
is not guaranteed, though in practice it seems to work well24.

23In this paper, marginal costs are the structural parameters that are changed when a carbon
tax is implemented. For the wind power counterfactuals, the residual demand is reshaped by
the amount of wind power increase.

24The iterative price search in continued until the average difference in the price vectors
between iterations is less than $0.01.
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Table 13: Equilibrium Price Dynamics Comparison

Actual Dynamic Static

Mean $63.03 $65.13 $62.96
Total Variance 1154 1014 207

Within Day 928 934 196
Between Day 225 79 10

6.5 Counterfactual Results

The counterfactuals are simulated using the estimated parameters from the pre-
vious section25. Given the parameters, the model can be solved for equilibrium
market clearing price for any potential sequence of demand realizations provided
that demand does not exceed the total capacity of the generators in the market.

To demonstrate the methodology, I first solve for counterfactual prices for the
time period used for estimation. This helps to evaluate how well the estimated
parameters together with the counterfactual solution method can predict the
observed data. To do this, I take the aggregate production of all generators
each hour as the realized ”demand” and solve for the prices to meet this path
of demand realizations. The results are shown in table 13. The first column
shows the statistics for the prices observed in the data over the sample period.
The second column describes the equilibrium prices solved by the counterfactual
algorithm using the estimated structural parameters. The final column shows
the equilibrium prices predicted by a static model where generators are deployed
in merit order based on marginal cost. In the static model, generators have the
same marginal costs as in the dynamic case, but no start-up costs. Without
start-up costs, there are no dynamic implications for firms’ decisions in the
current period. Since their behavior is determined only by the current price,
they will operate if and only if the price is greater than their marginal costs of
production in that period. Although simple, this serves as a useful benchmark
against which to illustrate the role of dynamics in the market. Addition details
on the static counterfactual can be found in Appendix A.

We see that the dynamic model matches average equilibrium prices fairly
well, but does predict that prices will be slightly higher ($65) than what we
observe in the data ($63)26. The variance of prices predicted by the dynamic
model also matches observed prices quite well. The static model however vastly
underestimates the price variance. Decomposing the variance into within day
and across day variance shows a similar picture. The dynamic model does

25For the two generators which did not operate or did not shut down during sample period,
it was not possible to estimate parameters. These generators include one large coal generator
which operated continuously throughout the estimation period and one older gas-steam plant
which never operated. As a lower bound on the start-up costs of the coal plant, the estimated
start-up costs of the largest gas plant were used. The older gas plant which never operated
was not included in the simulation

26The average price is the demand weighted average across all time periods. For the dynamic
model, the demand weight average price is also averaged across market simulations.
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Figure 4: Estimating Sample Equilibrium Price Histogram
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particularly well in matching the within day fluctuations in prices, though it
underestimates the across day variance. Prices from the static model have very
low variance both within and across day when compared with the observed
prices. Comparing the distribution of prices in figure 4 reveals that prices from
the dynamic model, though not as diffuse as observed prices, exhibit similar
tails in the high and low price regions. The model predicts prices well above
$200 and below $0.

We now move from simulating the observed estimating sample to simulating
counterfactual outcomes. The startup costs that are estimated using the four-
month sample can be applied to other time periods if the start-up costs do not
change over time. Thus, rather than focusing the counterfactual exercises on a
four month time period, the entire year of 2006 is used as the simulation pe-
riod. This allows the results to take into account seasonal variability in demand.
For example, lower demand periods in the fall and spring may be more respon-
sive to pricing carbon since there is unused capacity that can be reallocated.
Likewise, wind farms are most productive in lower demand periods which will
influence their impact on emissions and profitability. Simulating outcomes over
an entire year provides a more complete picture of market equilibrium under
counterfactual policies.

In order to avoid problems with an increasing state, the model is solved
separately for each quarter of the year. In each quarter, firms are assumed to face
a stationary distribution of prices, but the price distribution can vary flexibly
across quarters reflecting changes in the level and distribution of demand across
seasons. Also, fuel prices in each quarter are set to the average yearly fuel prices.
This negates the need for firms to predict fuel prices27. Relative fuel prices of gas
and coal are important parameters in determining the impact of carbon pricing
on outcomes. In 2006, the average price of gas was $6.40/MMBTU while the
average price for coal was $1.49/MMBTU28. Neither of these prices is in the
extreme of its historical price distributions, and they are both within the range
of long term forecasts for gas and coal prices(EIA 2012). Finally, the same set
of generators is carried through the entire year, with no entry or exit.

For the results that follow, all outcomes are compared to a baseline spec-
ification of the model, reflecting a no-regulation scenario. In addition to the
details above, it is necessary to choose a baseline sequence of demand realiza-
tions for each hour of each day (i.e. a sequence of 8750 demand realizations)
that generators will face. For representativeness, observed system-wide ERCOT
demand for each hour in 2006 is used as the foundation for the baseline, rather
then demand only in the West Zone. Since total system-wide demand would
outstrip the productive capacity of West zone generators, it is scaled by the

27In 2006 there is actually relatively little price variation across quarters. The average price
for delivered gas in quarters one through four is: $7.23, $6.10, $6.14, $6.12. The average price
for delivered coal in quarters one through four is: $1.48, $1.49, $1.43, $1.55.

28Recent developments in natural gas production in the US have caused gas prices in the
US to fall dramatically. Whether this is a temporary or a permnant change remains to be
seen. However, low gas prices mean that a carbon tax may have an impact at a lower price
than under historical fuel prices.
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ratio of total West zone generation to total system generation in 2006. The
result is a representative distribution of demand realizations that can be met
by the generators in the sample29.

Wind power production in the baseline follows a similar strategy. Baseline
wind power potential is calculated using observed system-wide wind power pro-
duction with the same scaling factor as for demand. Since the technological
characteristics of wind turbines allow them to costlessly change their utilization
of available wind, they are not subject to the same start/stop dynamics as con-
ventional generators. Consequently, wind farms will curtail production when the
price drops below their effective marginal costs. The operational costs of wind
turbines are close to zero, but with the addition of federal and state production
subsidies, marginal costs are effectively negative. For the counterfactuals, a
marginal cost of -$30/MWh is used for wind farms to reflect the approximately
$20/MWh federal production tax credit and $10/MWh state renewable energy
credits.

The counterfactual policy environments examined in this section include
explicitly pricing carbon dioxide emissions and increasing the share of electricity
supplied by wind power30. Counterfactual equilibria are solved for each scenario
under both inelastic and elastic demand functions. Outcomes of interest include
changes in emissions, profitability, and prices relative to the base case scenario
of no policy intervention. The results show the expected impact policies in the
short run and how they would affect the profitability of various technologies
going forward.

6.6 Carbon Price Counterfactual

The first counterfactual examines outcomes under a price on carbon dioxide
emissions ranging from $0 to $80 per ton of CO2 in $5 increments31. For each
price point, the dynamic model was used to solve for the equilibrium price path
that cleared the market in every hour over the year. Figure 5 shows the response
of aggregate annual emissions in both the dynamic and static model to increasing
prices for carbon using an inelastic demand curve. Note that the dynamic model
has higher initial levels of CO2, but responds more quickly to carbon prices

29Although observed demand in the West zone could be used as the baseline, it does not
follow the same distribution as system-wide demand. Since the grid usually operates as a single
entity, the prices that West zone generators face are in response to system-wide demand rather
than localized demand in the West zone.

30The model is agnostic about the source of carbon pricing which could be the result of
a carbon tax or the equilibrium permit price under a cap and trade regime. Wind power
development is assumed to be spurred by funding external to the electricity market such as
the federal production tax credit subsidy. As such, increased renewable energy investment
does not increase the cost of producing electricity. Rather, it exogenously arrives as the result
of policy which incentivizes renewable energy investment. Modeling the investment process
as a function of subsidization or incentives is outside the scope of this paper.

31Due to its computational simplicity, the static model was solved over the same range, but
in $1 price increments.
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Figure 5: Carbon Counterfactual: CO2 Response
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than does the static model32. Although they follow similar trends, at some
price points the reduction of carbon dioxide emissions in the dynamic model is
nearly double that implied by the static model. In either case, carbon dioxide
emissions are largely unphased by carbon prices at levels generally discussed in
policy circles; a $30 per ton price on carbon fails to reduce emissions by even
1%. Very little substitution occurs between high marginal cost, low emissions
gas generators and low marginal cost, high polluting coal generators due to
the large initial marginal cost advantage enjoyed by coal plants. A moderate
carbon price still leaves coal plants as the low cost producer. However, even at
$80 per ton, aggregate carbon dioxide emissions fall by less than 7%. This can
be compared to the maximum possible emissions reduction that could occur if
cleaner generators were always deployed first regardless of cost. In this case, the
short-run emissions reduction would be 23%. This implies that an $80 carbon
price captures one third of the total possible emissions reduction using existing
generating capital.

While short run emissions show little response to increasing carbon prices,
profits tell another story. Even though a $20 carbon price has negligible impact
of CO2 emissions, it has a significant effect on the profitability of different gen-

32Initially higher levels of CO2 emissions in the dynamic model are driven in part by the
higher underlying price volatility due to dynamics. True to observed behavior, lower efficiency
simple cycle gas turbines participate in the market in the dynamic baseline simulation, but
they do not in the static baseline simulation.
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Table 14: Carbon Price: Profits and Prices

Carbon Price
$0 $20 $40 $80

Δ Profit:
Coal – -27% -50% -83%
Combined Cycle Gas – 6% 30% 88%
Steam Gas – -1% 2% 3%
Gas Turbine – -2% -3% -3%

Dynamic Prices:
Average $/MWh $63 $73 $86 $113
Percent Change – 15% 35% 78%
Variance $328 $350 $472 $410

Within-Day $254 $271 $357 $305
Across-Day $74 $79 $114 $104

Static Prices
Average $/MWh $64 $75 $87 $115
Percent Change – 18% 36% 81%
Variance $115 $158 $197 $112

Within-Day $62 $86 $106 $58
Across-Day $52 $72 $91 $53

erating technologies. At $20/ton, the profits of coal plants drop by almost 25%,
while at the same time efficient combined cycle plants experience a significant
bump in profitability as shown in Table 20. This underlies the long run implica-
tions of carbon pricing; even if current production decisions remain essentially
unchanged, firms may make very different future investments. Increasing the
carbon prices beyond $20 per ton quickly erodes most coal profits and is a boon
to most gas generators. Startup costs paid by coal double with a $40 carbon
price and quadruple at $80, but play a relatively small direct role in reducing
profits. Increased startup costs account for roughly eight percentage points of
the 83% decrease in profits for the $80 carbon price scenario. Interestingly,
the model predicts that inefficient simple cycle gas turbines experience minor
drops in profitability as their marginal costs further separate from those of more
efficient generators.

Equilibrium prices show corresponding increases due to pricing carbon. Av-
erage annual prices increase from $63/MWh to $73/MWh with a price on carbon
of $20 per ton. Since demand is inelastic in this counterfactual, the increased
price of carbon is completely passed through to consumers. However, since many
generators emit less than one ton of CO2 per MWh, the average price does not
increase by $20. A very high carbon tax of $80/MWh would increase average
prices by $50. For comparison, the equilibrium price characteristics for the static
model are also shown. The average prices in static model are nearly identical
to those of the dynamic model. However, the dynamic model exhibits signifi-
cantly higher price variation than the static formulation. The higher variance
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comes mostly from greater within-day price variation rather than across-day
price variation. This is reflective of the need for firms to startup and shut down
to follow daily load fluctuations. Higher price variation is needed to induce this
behavior in the presence of startup costs. However, the higher peak prices and
lower off peak prices lead to roughly similar average prices.

Wind revenues also steadily increase as a function of carbon prices. Figure
6 shows the increase in annual wind farm revenues per MW of capacity. The
upper line shows revenues from both electricity sales and subsidies, while the
lower line shows revenues from electricity sales only33. The importance of subsi-
dies for a wind generator’s bottom line is immediately apparent from the graph.
The results of the model identify the ”break-even” carbon price for wind farms
under counterfactual equilibrium prices. Without subsidies, it would take ap-
proximately a $37/ton price on carbon to leave installed wind generators with
the same revenues that they currently receive under a policy of subsidization.

Since the estimated startup costs are higher than expected, we might won-
der whether the results will hold with lower start up costs. Also, even if the
estimated startup costs are appropriate, firms may be able to invest in tech-
nology to lower their startup costs if it is profitable to do so. In either case,
we would want to understand how the counterfactual results change with lower
startup costs. To explore the sensitivity of the results to the estimated startup
costs, I solved for counterfactual equilibria using much lower calibrated startup
costs. The calibrated counterfactual results show a pattern of emissions reduc-
tion which is very similar to that found under the estimated parameters. The
calibrated parameters and discussion of the full results can be found in appendix
E.

33Although wind farms in Texas receive approximately $30/MWh in subsidies, the federal
portion of the subsidy expires after the first 10 years of operation. Under the assumption that
wind farms continue to operate after federal benefits expire and continue to receive a state
subsidy, the discounted cost of the subsidy is approximately $20/MWh over the life of the
wind farm. This is the value that is used when comparing annual revenues with and without
subsidies.
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Figure 6: Carbon Counterfactual: Annual Wind Revenues
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6.7 Wind Development Counterfactual

The model is also used to solve for equilibrium prices as the share of electricity
produced by wind increases. Counterfactual equilibria are calculated as the
potential share of electricity produced by wind increases from the observed level
of 2% up to 30% of the total. Since wind power installations already exist in
Texas, the production profile of those wind farms can be used to simulate the
production of additional wind farms.

In 2006, wind farms accounted for 2% of electricity production in ERCOT.
To construct counterfactual wind production, observed wind production is sim-
ply scaled up. For example, for the 10% wind counterfactual, wind production
in each period over the year is scaled up until the total potential wind produc-
tion could be 10% of annual electricity demand34. Even if new wind farms are
less productive than existing wind farms, due to being placed on less desirable
properties, scaling the production patterns of existing wind farms will provide a
good approximation of continued build-out as long as the diurnal and seasonal
patterns of wind production are similar.

Wind farms in this region exhibit electricity production patterns that are
heavily skewed toward off-peak power production as demonstrated in Cullen
(2013). It is typical for on-shore wind farms to have significantly higher levels

34Note that in equilibrium, wind production might not be the same as potential wind
production as wind farms will curtail production if prices dip low enough.
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of production at night and in the spring and fall, when demand for electricity
is at its lowest levels. This pattern of production will exacerbate the volatility
in the residual demand curve and resulting equilibrium prices, especially in the
presence of start-up costs.

Figure 7 shows the change in CO2 emissions as wind increases its share
of production for both the static and dynamic models. Surprisingly, for the
estimated start-up costs and sample of generators in the counterfactual, both
models show similar reductions in CO2 as wind production increases, despite the
increased volatility in residual demand. The inclusion of dynamics does not seem
to reshape the response of aggregate emissions to increased wind production.
When wind produces 30% of electricity, carbon dioxide emissions are reduced
by approximately 23% in either model.

Figure 7: Wind Counterfactual: CO2 Response
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Profits and prices also significantly change as a result of wind production.
Table 15 shows that profits for all fossil fuel generators fall across the board as a
result of increased wind production. However, technologies with larger start-up
costs fare far worse than more flexible technologies such as gas turbines. Prices
also fall as the result of more wind power production by anywhere from 6%
up to 29%. Importantly, the dynamic and static models have different price
distributions. Price changes are steeper and price volatility is much higher in a
dynamic model than with a static model.

Price volatility has important implications for the profitability of wind farms,
as illustrated by figure 8. As wind accounts for larger shares of electricity
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Table 15: Wind Production: Profits and Prices

Wind Production
10% 20% 30%

Δ Profit
Coal -9% -22% -37%
Combined Cycle Gas -20% -40% -54%
Steam Gas -13% -28% -41%
Gas Turbine -6% -13% -21%

Dynamic Prices:
Average $/MWh $60 $53 $45
Percent Change -6% -16% -29%
Variance $333 $488 $957

Static Prices:
Average $/MWh $60 $55 $48
Percent Change -6% -13% -23%
Variance $144 $221 $561

production, the increased price volatility increases dramatically due to start-
up costs as shown in table 15. Prices are pushed to lower levels in off-peak
periods to get conventional generators to shut off production and raised in peak
periods to get generators to meet increased demand. Since wind farms are most
productive in off-peak periods and cannot shift their production to high price
periods, their profits are much lower than would be implied by a static model.
Operational dynamics reshape the potential profits from renewable technologies
leading to different investment incentives.
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Figure 8: Wind Counterfactual: Annual Wind Revenues
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6.8 Demand Response

All the results presented so far have assumed that demand is inelastic. How-
ever, as the equilibrium price for electricity changes, the quantity demanded will
change. This is likely to be an important factor in overall emissions from the
sector, especially for high carbon prices. In this section, I examine the implica-
tions of the demand response on profits and emissions. As laid out in section 6.2,
the demand function is characterized by consumers responding to average elec-
tricity prices with a calibrated demand elasticity of -0.7. Figure 9 compares the
former results with CO2 reductions when firms face the elastic demand curve.
The impact of CO2 pricing is dramatically different as compared with an elastic
demand curve. Emissions show an immediate response that grows quickly as
the price on carbon increases. A $20 carbon price reduces emissions by 7%,
the same amount as an $80 price with an inelastic demand curve. However, the
reduction in emissions if coming exclusively from reduced demand for electricity
rather than lower emission rates from generators. In fact, the average emission
rate across generators for low carbon prices increases slightly since the reduced
demand cuts first into cleaner gas production. Unsurprisingly, the profits of
fossil fuel generators also decline more sharply with an elastic demand curve.
At $20 per ton of CO2, coal generators experience a 31% drop in profitability.
The profits of higher cost steam and gas turbine generators also drop due to de-
clining demand. However, efficient low emission combined cycle generators have
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relatively flat or increasing profits making them more attractive investments.

Figure 9: Carbon Counterfactual: Demand Response
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The impact of wind generation on emissions also changes significantly with
an elastic market demand curve, as shown in figure 10. Emissions decrease by
14% rather than 22% when wind accounts for 30% of production. This is a
direct result of increased demand for electricity due to lower electricity prices
when wind development is funded from external sources. This demand rebound
highlights the importance of incorporating the costs of renewable into electricity
prices when working to achieve emissions reductions.

This also underscores the advantage carbon pricing enjoys in properly align-
ing incentives. Without accounting for demand adjustments, a 15% share wind
power seems to be more effective at reducing emissions (-10%) than a $20 price
on carbon (<1%). However, once demand is allowed to respond to the equilib-
rium prices, a $20 carbon price is more effective (-8%) than subsidizing wind
power (-6%). Additionally, incentives to invest in low carbon fossil technology
would only increase the advantages of pricing carbon over technology specific
subsidies.
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Figure 10: Wind Counterfactual: Demand Response
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Table 16: Demand Response: Profits and Prices

Carbon Price Wind
$20 $40 $80 10% 20% 30%

Δ Profit:
Coal -31% -62% -91% -5% -12% -19%
Combined Cycle Gas 0% -5% 32% -11% -18% -21%
Steam Gas -24% -37% -55% -2% -2% 9%
Gas Turbine -9% -14% -21% -1% -2% 1%

Dynamic Prices:
Average $/MWh $71 $79 $103 $60 $57 $53
Percent Change 8% 16% 40% -4% -8% -15%
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7 Conclusion

This paper builds a repeated entry/exit model in a competitive market where
firms are persistent and their identities are known. The dynamic framework
allows for the estimation of firm-specific distributions of entry (start-up) costs
and facilitates counterfactual simulation of the market. The model aggregates
the actions of a finite collection of dynamically optimizing single agents to solve
for equilibrium market clearing prices such that firms’ expectations for prices
are consistent with the equilibrium distribution of prices.

The model is applied to the electricity industry in order to understand the
short-run implications of potential environmental policies for equilibrium elec-
tricity prices, emissions, and firm profits35. These changes in short-run emissions
and profitability changes will shape future investment decisions.

Using a portion of the Texas grid as a test bed, start-up cost distributions
are estimated for each individual electricity generator. Counterfactual simula-
tions using the estimated parameters indicate that emissions from electricity
production are largely unresponsive to pricing carbon at levels discussed in pol-
icy circles. A price of $20/ton of CO2 results in negligible changes in carbon
emissions when demand is inelastic. However, the profitability of dirty genera-
tors is substantially reduced, and profits for clean generators increased, for even
modest prices on carbon.

Incentives which spur the development of wind farms lead to more immediate
reductions in emissions. However, increased wind power production lacks the
same long-run incentives for technology switching that a carbon price provides.
It decreases the profitability of cleaner generators more than that of dirtier ones.
In addition, emissions reductions are substantially eroded away by a rebound
in demand in the long run when funded by external subsidies.

Incorporating the short-run dynamic considerations facing generators yields
different outcomes in a number of important aspects. First, equilibrium prices
are much more volatile due to dynamics. This is particularly true as renewables
gain higher market shares. Second, due to high price volatility, the profits
that wind farms earn are substantially lower when dynamics are accounted for.
Finally, emissions reduction in the static and dynamic frameworks do differ,
though such differences were not dramatic for the estimated parameters used in
the simulations.

The results of this analysis indicate that we should not expect much from
pricing carbon emissions in the short run. However, even moderate carbon pric-
ing impacts the profitability of high carbon technologies profoundly. For policy
makers, this implies that meaningful reductions in carbon dioxide emission may
be able to be achieved without drastic environmental policies, but a longer time
horizon will be required to realize those benefits.

35For any potential environmental policy, there will be short-run and long-run implications
for electricity generators. In the short run, firms will re-optimize their day-to-day operating
decisions given their existing generating capital. In the long-run, firms will make investment
decisions based on how their profitability has changed under the new policy environment.
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A Static Counterfactual

The static counterfactual is carried out in the following manner. In the static
setting, firms do not incur startup costs. Rather, they operate with respect to
their marginal cost only. This implies that generators will operate at maximum
capacity whenever price is above marginal cost, will not operate whenever the
price is below marginal cost, and will operate at some point within its operating
range when price equals marginal cost. Firms are still bound by their minimum
and maximum output constraints.

To solve for the static counterfactual, price is set each period such that
demand is just met by the total output of all the generators. The market
clearing price will be the marginal cost of the marginal generator. There are
no issues with multiple equilibria as long as no two firms have the exactly the
same marginal cost.

There do arise cases when the minimum output constraints for the marginal
generator bind. In the case, production is reduced by the next highest cost
generator until there is no longer excess supply. The market clearing price is
still the marginal cost of the marginal generator. However, for the purposes of
calculating profits, I assume that the grid operator will have to ”make whole”
any inframarginal generators which are operating at less then maximum ca-
pacity. That is, the generator would receive payments for its entire productive
capacity when it is asked to back down from optimal maximum production.
For example, suppose an inframarginal unit must reduce production to 80% of
capacity in order to clear the market. The generator would like to produce at
100% capacity since price is above its marginal cost. Therefore, revenues would
be calculated as if the generator were producing at full capacity.

B Dynamic Price Process

In a structural, dynamic model, firms’ expectations over prices must be explicitly
modeled. Ideally, one would use each firm’s actual beliefs for the evolution of
prices. Absent direct information about beliefs, beliefs are estimateds under a
rational expectations framework. That is, actual equilibrium prices are used to
estimate firm beliefs over prices.

Expectations over the future distribution of prices are modeled using a
Markov AR(1) process conditional on hour of the day.

F (Pt+1|Pt, Ht)

Here P is the market clearing price and H is the hour of the day in time
period t. This parsimonious model of beliefs assumes that this period’s price
and hour are sufficient for predicting the distribution of next period’s price.

The AR(1) process is motivated in part, by computational constraints. The
dynamic model demands that the specification be as simple as possible. Each
variable that is used to predict prices adds an additional dimension to the state
space. An additional dimension in the state space exponentially increases the
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computational burden of solving the dynamic programming problem. It is ad-
vantageous therefore to have the simplest possible model of beliefs that reason-
ably captures the evolution of prices.

One might argue that this simple Markov process is not sufficiently rich
to accurately model the expectations of the firm. Indeed, firms have more in-
formation than simply the lagged price and time of day with which to form
expectations for price in the next period. For example, firms may have expec-
tations over future temperatures, load levels, and congestion. In addition they
may use a long price history when predicting future prices. The extent to which
the proposed model is adequate depends on the degree to which the current price
encapsulates other information that the firm may have. To this end, we now
evaluate the model for price expectations by first examining the price process
itself, and then by testing the robustness of the structural parameter estimates
to changes in the model.

B.1 Price Process

The conditional markov price process is implemented in using a semi-parametric
functional form. We start with a cubic polynomial expansion of the current
price. Then the polynomial is interacted with dummies for each hour of the
day.

Pt+1 = β0 + β1Pt + β2P
2
t + β2P

3
t + Dα0 + PtDα1 + P 2

t Dα2 + P 3
t Dα3 + εt.

where D is a vector of 24 hour of day dummies. The interactions between the
cubic polynomial in prices and the hour of day dummies allow the coefficients to
be completely flexible across the hours of the day. The specification is essentially
performing a separate regression of next hour’s price on current price for each
hour of the day. This is important because the current price for electricity will
have different implications for future prices if we are in time period of increasing
demand as opposed to decreasing demand. For example, $50/MWH at 5:00pm
likely means that prices will be even higher next hour since demand is usually
ramping up at that time of day. The same price late in the evening would
indicate a price lower than $50/MWH the next hour since demand is generally
decreasing. By estimating the price process in cubic form separately for each
hour of the day, beliefs can be modeled simply, but flexibly.

The results show that the model explains the data reasonably well. First,
the model fits the data fairly well with an adjusted R2 of 0.71. The full results
from estimating the price process are shown in table 18. Second, I examine the
residuals to see if a further lag of price can explain the residual variation from
the model. If an AR (1) process with Pt is not a sufficient, then a additional
price information, such as Pt−1, should be able to explain the residual variation
from the estimation. To do this, I apply the same flexible model by regressing
the residuals, et+1, on a cubic polynomial expansion of Pt−1 interacted with
dummies for each hour.

Residualt+1 = β0+β1Pt−1+β2P
2
t−1+β2P

3
t−1+Dα0+Pt−1Dα1+P 2

t−1Dα2+P 3
t−1Dα3+ωt−1.
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The lagged price explains very little of the residuals with an adjusted R2 of
0.001. The lagged price variables are not jointly significant at even the 25%
level. Finally, I test the residuals for white noise using two different tests. If
the residuals can be characterized as white noise, then we can rule out serial
correlation. Serial correlation might indicate a missing variable that could ex-
plain persistent trends in the price process. I first apply the Bartlett test which
is a periodogram-based white-noise test(M.S. Bartlett 1955). We fail to reject
the null hypothesis that the residuals are white noise with a P-value of 0.43.
The second test used is the Ljung-Box test (G. M. Ljung & G. E. P. Box 1978).
This test requires the econometrician to specify the number of lags to be used
when testing for white noise. With 10 or 20 lags, we fail to reject the null of
white noise at almost any significance level. With enough lags, however, we
can eventually reject the null. (At 40 lags the null can be rejected at the 5%
level). Though not entirely conclusive, these results suggest that serial corre-
lation is not a first order concern. Altogether, the price process results show
strong explantory power with residuals that show evidence of being white noise
and cannot be easily explained with a additional lag in prices.

B.2 Distribution of Expected Prices

The model of the price process is used to construct beliefs over possible future
prices. This is represented as a price transition matrix that is then feed into the
dynamic optimization problem. In constructing beliefs, not only are expected
prices important, but also the distribution of expected prices are an important
part of the decision making process. High variance in the distribution of future
prices can create an option value for the firm. For example, if prices could be
either very high or very low next period, a firm may want to wait to startup
until it observes next period’s price. Consequently, I want to allow for a flexible
distribution of prices as well as for state-dependent heteroskedasticity.

State dependent heteroskdasticity is introduced by allowing the variance of
the distribution of prices to vary by the hour of the day. Thus high demand-
high price hour of the day can have a higher variance than more predictable
low demand-low price hours. This is accomplished by separately estimating the
variance of prices for each hour of the day. To do this, I regress next hour’s
price on current price separately for each hour of the day.

Pt+1 = βi0 + βi1Pt + βi2P
2
t + βi2P

3
t + εt.

if time period t is in hour i. The point estimates are identical to the specifi-
cation above that includes dummies. No dummies are necessary here since the
parameters are already completely flexible across hours of the day.

Rather than assuming that the errors are normally distributed, I instead
use the empirical distribution of the residuals in each hour to characterize the
distribution around the predicted price. This allows not only the variance to
be different for each hour, but also allows the entire distribution of prices to
be different in each hour. Allowing both the variance and the shape of the
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distribution to vary with the hour of the day introduces significant flexibility
into the model of beliefs over prices.

B.3 Robustness of Structural Parameters

Ultimately the estimated price process is used to formulate beliefs for the dy-
namic model. In this section, I explore how changes in the model of beliefs
affect the structural parameter estimates. Given the complexity of the model,
it is not a trivial task to change the model of beliefs. If more information is
used to construct beliefs, such as additional lags of price, then the state space of
the model is also changed. Exploring many possible specifications for beliefs is
not feasible. Instead, I propose a single specification that will be in some sense,
the limit of many other specifications. By more richly specifying the model of
beliefs, firms will have weakly better predictions of future prices. In fact, if
firms had perfect information about everything in the market, they would, in
theory, be able to perfectly predict the path of prices. Thus to test the ro-
bustness of the structural estimates to better predictions over prices, I estimate
the model under the assumption that firms can perfectly predict prices. This
perfect foresight scenario can be thought of as the limiting case for richer and
richer specifications of beliefs. Since firms know the future prices, they can per-
fectly account for the dynamic implications on their decisions. Table 17 shows
the structural parameter estimates from the perfect foresight model in column
one compared with the estimates with the preferred specification for beliefs in
column two. The results show that the estimates are very similar. In fact,
for most generators, estimated startup costs with perfect foresight are greater
than those under preferred model for beliefs. These results illustrate that the
estimates of startup costs are being driven by the specification used for beliefs.

Table 18: Price Process

AR(1) Price Process
Pt .785 (.413)
P 2

t .00225 (.00168)
P 3

t -7.72e-06 (.0000184)
Hour 2 -14.7 (23.4)
Hour 3 -12.3 (30.5)
Hour 4 -4.62 (31.3)
Hour 5 .537 (32.6)
Hour 6 -3.89 (39.5)
Hour 7 -22.6 (24.6)
Hour 8 -3.89 (15.1)
Hour 9 -10.6 (15.1)
Hour 10 -1.85 (17.6)
Hour 11 -21.1 (20.2)
Hour 12 -11.8 (35.7)
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Hour 13 -20.7 (28)
Hour 14 176 (44.8)
Hour 15 8.75 (22.9)
Hour 16 -42.7 (23.3)
Hour 17 -72.5 (21.2)
Hour 18 -15.6 (21.7)
Hour 19 -51.6 (19.4)
Hour 20 -33.7 (21.9)
Hour 21 10.3 (38.9)
Hour 22 14.6 (53.5)
Hour 23 -12.8 (54.3)
Hour 24 -71.5 (32)
Pt*Hour 2 .462 (.888)
Pt*Hour 3 -.0679 (1.63)
Pt*Hour 4 -.837 (2.28)
Pt*Hour 5 -1.18 (3.04)
Pt*Hour 6 -.353 (4.26)
Pt*Hour 7 .138 (2.29)
Pt*Hour 8 -.244 (.461)
Pt*Hour 9 .118 (.436)
Pt*Hour 10 .52 (.576)
Pt*Hour 11 1.16 (.678)
Pt*Hour 12 .157 (1.49)
Pt*Hour 13 .68 (1.05)
Pt*Hour 14 -8.55 (1.83)
Pt*Hour 15 -.446 (.659)
Pt*Hour 16 1.18 (.654)
Pt*Hour 17 2.15 (.557)
Pt*Hour 18 .58 (.567)
Pt*Hour 19 1.45 (.505)
Pt*Hour 20 .841 (.598)
Pt*Hour 21 -.91 (1.57)
Pt*Hour 22 -1.15 (2.45)
Pt*Hour 23 .442 (2.56)
Pt*Hour 24 2.34 (1.1)
P 2

t *Hour 2 -.00875 (.0103)
P 2

t *Hour 3 .00521 (.0291)
P 2

t *Hour 4 .0275 (.0562)
P 2

t *Hour 5 .0423 (.0942)
P 2

t *Hour 6 .0114 (.148)
P 2

t *Hour 7 .0135 (.0755)
P 2

t *Hour 8 .00555 (.00283)
P 2

t *Hour 9 .0131 (.00308)
P 2

t *Hour 10 -.0102 (.00446)
P 2

t *Hour 11 -.0143 (.00597)
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P 2
t *Hour 12 .00344 (.0191)

P 2
t *Hour 13 -.00324 (.0117)

P 2
t *Hour 14 .126 (.0234)

P 2
t *Hour 15 .0066 (.00472)

P 2
t *Hour 16 -.00884 (.00452)

P 2
t *Hour 17 -.0185 (.00311)

P 2
t *Hour 18 -.00794 (.00318)

P 2
t *Hour 19 -.0144 (.00246)

P 2
t *Hour 20 -.00871 (.00361)

P 2
t *Hour 21 .0153 (.0197)

P 2
t *Hour 22 .0187 (.0351)

P 2
t *Hour 23 .00393 (.038)

P 2
t *Hour 24 -.0277 (.011)

P 3
t *Hour 2 .0000143 (.0000429)

P 3
t *Hour 3 -.0000906 (.000168)

P 3
t *Hour 4 -.00027 (.000435)

P 3
t *Hour 5 -.000459 (.000912)

P 3
t *Hour 6 -.0000949 (.00161)

P 3
t *Hour 7 -.000244 (.000777)

P 3
t *Hour 8 .00004 (.0000559)

P 3
t *Hour 9 -.000126 (.0000294)

P 3
t *Hour 10 .0000241 (.0000214)

P 3
t *Hour 11 .0000302 (.0000241)

P 3
t *Hour 12 -.0000537 (.0000777)

P 3
t *Hour 13 -.0000206 (.000044)

P 3
t *Hour 14 -.000546 (.0000957)

P 3
t *Hour 15 -.0000211 (.0000215)

P 3
t *Hour 16 .0000189 (.0000211)

P 3
t *Hour 17 .000041 (.0000192)

P 3
t *Hour 18 .0000226 (.0000192)

P 3
t *Hour 19 .0000302 (.0000187)

P 3
t *Hour 20 .0000157 (.0000193)

P 3
t *Hour 21 -.0000871 (.0000785)

P 3
t *Hour 22 -.000104 (.000158)

P 3
t *Hour 23 -.0000878 (.000179)

P 3
t *Hour 24 .0000713 (.0000392)

Constant 12.3 (14.4)

Standard errors in parentheses
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Table 17: Perfect Foresight

Unit Perfect Foresight AR(1) Percent Difference

Calenergy $886,020 $246,210 260%
(482,990) (313,630)

Graham 1 $80,361 $59,727 35%
(6,806) (3,871)

Graham 2 $43,870 $33,297 32%
(4,070) (2,337)

Morgan Creek A $38,959 $36,490 7%
(4,496) (4,275)

Morgan Creek B $37,247 $34,325 9%
(4,170) (3,802)

Morgan Creek C $35,374 $34,325 3%
(3,926) (3875)

Morgan Creek D $36,753 $33,460 10%
(4,119) (3,709)

Morgan Creek E $36,445 $35,056 4%
(3,921) (3,890)

Morgan Creek F $36,959 $36,767 1%
(4,076) (4,335)

Morgan Creek 5 $98,176 $61,463 60%
(14,287) (5,860)

Morgan Creek 6 — — —
— —

Odessa $408,060 $461,330 -12%
(137,080) (211,420)

Oklaunion — — —
— —

Permian Basin A $27,159 $26,456 3%
(2,554) (2,221)

Permian Basin B $30,762 $28,601 8%
(3,002) (2,425)

Permian Basin C $31,931 $30,637 4%
(3,300) (2,839)

Permian Basin D $39,462 $35,802 10%
(4,471) (3,570)

Permian Basin E $55,870 $43,755 28%
(7,752) (4,764)

Permian Basin 5 $181,810 $183,210 -1%
(41,021) (45,756)

Permian Basin 6 $203,970 $119,520 71%
(37,694) (16,079)

Sweetwater $55,030 $56,857 -3%
(4,705) (5,153)

Witchita $53,492 $58,006 -8%
(6,754) (8,118)

55



C ERCOT Market Mechanisms

To ensure that there is sufficient supply, ERCOT requires generators and elec-
tricity retailers to submit scheduled energy transactions a day ahead. These
schedules are submitted through a Qualified Scheduling Entity (QSE) which
generally submits schedules for a portfolio of generators and power purchasers.
These schedules outline which generators are planning to produce power and
how that power will be transmitted to end users for each hour of the day. ER-
COT allows QSEs to submit day-ahead schedules which leave them in long or
short positions entering the production period36. QSEs are also required to
submit Balancing Market bidding functions for each hour of the day. The bid-
ding functions show the willingness of generation portfolio to deviate from its
scheduled output as a function of the price in the Balancing Market. The QSE
must submit its willingness to both increase and decrease the portfolio output
in response to price.

In real-time, ERCOT uses the Balancing Market to ensure adequate supply
and to equate the marginal costs of production across generators. Every fifteen
minutes ERCOT intersects the hourly bidding functions to arrive at a Market
Clearing Price for Energy (MPCE) in each zone via a multi-unit uniform price
auction37. If there is no congestion between zones, then the prices are the same
in each zone and the entire grid acts a single market. If congestion would occur
between zones with a single MCPE, then ERCOT intersects the bidding func-
tions separately by zone to achieve market clearing prices for each zone which
do not exceed the transmission capability between zones. For example, if more
power is needed in the South zone, but the transmission lines are at capacity,
ERCOT will raise the prices in the South zone while lowering or keeping con-
stant the prices in the other zones. In any case, generators respond to MCPE
based on their bidding functions. The Balancing Market also helps to ensure
that the lowest cost producers are generating electricity. At a low MCPE, high
marginal cost firms have incentives to reduce or shut down production and sat-
isfy their contractual obligations through energy procured from the Balancing
Market. In a static, price-taking setting, the Balancing Market would ensure
that only the lowest cost generators were producing energy each period. With
the introduction of dynamics in the generating process, this no longer holds.

In addtion to interzonal congestion discussed in the body of the paper, con-
gestion can also arise within zones. This type of congestion cannot be resolved
with market prices since there is only one price for each zone. To deal with
local congestion, ERCOT deploys generators out of bid order. That is, ER-
COT deploys specific generators which are not willing to increase production at
current prices by offering them prices higher than the prevailing market price.
The costs of deploying these resources to alleviate local congestion is covered by
an output tax levied on all generators in the zone. This amounts to a uniform
increase in marginal costs across all generators. Thus, transmission congestion

36ERCOT also requires firms to have sufficient levels of ancillary power services
37See Hortacsu & Puller (2008) for a detailed explanation of the auction process.
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is either explicitly accounted for in the market price, if it occurs between zones,
or it arrives as a uniform output tax on all generators in a zone.

D Equilibrium Proof

In this section, I show that an equilibrium exists for the model and that the
equilibrium is unique under certain conditions. An equilibrium is defined by
a finite vector of prices and demand functions such that in each period t the
aggregate supply of all generators in the market meets demand. In addition, I
require that firms’ expectations for prices are consistent with the equilibrium
price vector. Recall that the evolution of price is described by a Markov process
which is conditional on the current price P and hour of day H. Let F (P,H)
denote a model of beliefs that describes the distribution of future prices for each
relevant state (P,H)38. To show existence, I first show that there is a unique
price equilibrium, P ∗, for a fixed F (P,H).

With fixed beliefs F (P,H), there is a unique equilibrium price in a given
period t, if the aggregate supply function, Sit(Pt), is continuous and increasing in
Pt and if the demand function is also continuous and strictly decreasing. Given
that demand does not exceed total generation capacity, then by the intermediate
value theorem there is a single intersection of supply demand. Recall that the
aggregate supply function has the following form.

St(Pt, Ht, at−1, εt) =
N∑

i=1

sit(Pt, Ht, ait−1, εit) (15)

Since the aggregate supply function is the sum of the firm-level supply func-
tions, it is sufficient, though not necessary, to show that each firm’s supply
function is increasing in Pt for every state.

Referring back to the model in the paper, the generator-specific expected
supply function is:

sit(Pt, Ht, ait−1, εit) = ait(Pt, Ht, ait−1, εt)qit(Pt) ∀t ∈ {1, 2, ..., T } (16)

If qit and ait are increasing in Pt, then the firm level supply function sit will
also be increasing in Pt . First, qit is increasing simply by definition as shown
in equation 2. Second, if expectations for future prices are weakly increasing in
the current price then the optimal policy function, ait(Pt, Ht, ait−1, εit) will be
increasing in price.

The optimal policy function, pi(at|Pt, Ht, Lt; F (.)), gives the optimal oper-
ating choice for each state and, in an abuse of notation, is written here to show
its implicit dependance on beliefs F (.).

The optimal policy is a function of the choice specific value functions as
shown below.

38Note that the lagged operating state, L, does not affect the distribution of prices by
assumption.
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ait(Pt, Ht, ait−1, εit) = (V1(Pt, Ht, ait−1) + ε1it ≥ V0(Pt, Ht, ait−1) + ε0it) (17)

where
V0 = βEV (Pt, Ht, at = 0|F (.))
V1 = Π(Pt, ait−1) + βEV (Pt, Ht, at = 1|F (.))

(18)

Using these equations, we can show that the optimal policy, and thus sup-
ply, is weakly increasing in the difference in the choice specific value functions.
Holding fixed the expected future value EV (.), ait is increasing in Pt since cur-
rent profits are strictly increasing in Pt and are only earned if the generator is
operating. However, the EV (.), will be increasing in Pt only if higher prices
this period imply weakly higher prices next period. Thus, a sufficient condi-
tion for the optimal policy to be increasing is that F (P ′, H) weakly first order
stochastically dominates F (P,H) for every P ′ ≥ P. This rules out beliefs where
increasing the price this period leads to a lower price next period.

I have shown that for a conditional on ait−1 and ε0it and with the appropiate
F (P,H), sit will be increasing in the current price for each generator. Thus,
starting in the first period with initial conditions a0 we can find the unique
market clearing price, P ∗

1 , that satisfies demand.

D1(P
∗
1 ) = St(P

∗
t ) =

∑

i

si1(P
∗
1 |H1, ai0, εi1) (19)

Using a1 implied by P ∗
1 , I then solve for the next period’s market clearing

price, P ∗
2 . This is continued for all time periods resulting in a unique price

equilibrium.
The result above assumes that St is continuous and that Dt is strictly de-

creasing. However, due to minimum output constraints, St may not be contin-
uous. In addition, Dt may not be strictly decreasing, such as in the inelastic
demand case. I will address these in turn.

First, since St is a non-continuous function there may be cases where the
demand and supply curve do not intersect. This is illustrated in figure 11. In
this case, at the ”equilibrium” price there is a discontinuous jump in production
due to the fact that the marginal generator cannot produce below its minimum
output constraint. At this price, supply would exceed demand. To equate
supply and demand, I reduce production from inframarginal generators until
supply meets demand starting with the highest cost generator. In doing so,
I respect the minimum output constraints of each generators. If there is still
an excess supply, with all generators operating at their minimum production
levels, I assume that the residual excess supply can be costlessly discarded. In
this way, there is still a unique equilibrium price with production allocated such
that supply and demand match exactly39.

39Note that firms would not be profit maximizing by producing less than their optimal
levels. To maintain profit maximization of these inframarginal firms, I assume that they are
made whole by the grid operator. That is, there are payments are made to the generators such
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Second, in the case of an inelastic demand curve, there may be more than
one equilibrium price if the quantity demand intersects a vertical portion of the
step function as shown in figure 12. In this case, I use the lowest market clearing
price as the equilibrium price.

After accounting for these two cases, there exists a unique equilibrium price
vector, P∗, which clears the market in each period conditional on the set of
beliefs F (P,H).

Figure 11: Non-continuous Function Case
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An additional condition that I want to be satisfied is that firms’ expectations
over prices be consistent with the equilibrium price vector. Suppose that there
is a function G which firms use to map a path of prices P at hours H into a
model of beliefs F (P,H), G : P,H → F (P,H). I say that an equilibrium price
vector, P∗(F̂ (P,H)), is consistent with beliefs F̂ (P,H) if G(P∗,H) = F̂ (P,H).
That is, the beliefs that are generated by the equilibrium price vector are the
same beliefs that firms were using in their optimization. In this case there is no
ex-post regret on the side of the firms. Had they observed this path of prices in
the past, they would not have changed their policies. This amounts to finding
a fixed point between beliefs and the market clearing price vector. Due to the
discontinuous and non-differentiable nature of the supply function, it is difficult
to prove existence in this setting. In addition, I have not shown that such an
equilibrium, if it exists, would be unique. However, subsequent work by Joseph
Cullen & Stan Reynolds (2014), the authors show that when the number of firms
in the market is large, such an equilibrium does exist and is in fact unique.

that their profits are the same as if they had been producing at full capacity. Alternatively,
I could assume that all excess production is discarded. This would result in the same profits
as above but would have needlessly higher emissions.
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Figure 12: Inelastic Demand Case
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E Calibrated Startup Costs

In this section, the sensitivity of the results to changes in the estimated startup
costs is investigated. As noted in the paper, the estimated startup costs are
much higher than startup costs that have been estimated in other work and are
on the high end of the range of possible engineering costs. Fortunately, it is not
necessary to estimate the startup costs in order to solve for the counterfactual
equilibria using this framework. Any calibrated values for startup costs can be
used in the counterfactual simulations. However, finding direct information on
startup costs is challenging as it is considered propriety business information in
most electricity markets.

Absent firm reported information on startup costs, I use engineering esti-
mates of startup cost to calibrate the model. The National Renewable Energy
Laboratory recently commissioned an engineering analysis of startup costs for
the purpose of investigating the impact of renewables on market operations(Kumar
et al. 2012). In the report, the authors estimate a lower bound on startup costs
per MW of capacity for generators of various technology types. Applying these
estimates to the generators in the counterfactual we are left with the calibrated
startup costs shown in table 19.

The calibrated startup costs are anywhere from two to ten times smaller
than the estimated startup costs. The variance of the structural error for each
generator is calibrated such that σ is 10% of the calibrated startup cost.

Despite the large differences between the calibrated and estimated startup
costs, the path of counterfactual emissions reductions follow a very similar pat-
tern. Figure 13 plots the emission response to a carbon price for the dynamic,
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Table 19: Calibrated Startup Costs

Calibrated Estimated
Unit Startup σ Startup σ

Calenergy $19,080 $1,908 $246,210 $24,965
Graham 1 $29,770 $2,977 $59,727 $10,419
Graham 2 $49,010 $4,901 $33,297 $6,802

Morgan Creek A $3,320 $332 $36,490 $6,092
Morgan Creek B $3,400 $340 $34,525 $5,733
Morgan Creek C $3,320 $332 $34,325 $5,599
Morgan Creek D $3,400 $340 $33,460 $5,632
Morgan Creek E $3,320 $332 $35,056 $5,782
Morgan Creek F $3,360 $336 $36,767 $6,064
Morgan Creek 5 $16,510 $1,651 $61,463 $8,585
Morgan Creek 6 — — — —

Odessa $86,40 $8,640 $461,330 $67,006
Oklaunion $94,500 $9,450 $461,330 $67,006

Permian Basin A $2,600 $260 $26,456 $4,533
Permian Basin B $2,600 $260 $28,601 $4,925
Permian Basin C $2,600 $260 $30,637 $5,146
Permian Basin D $2,600 $260 $35,802 $5,709
Permian Basin E $2,600 $260 $43,755 $6,409
Permian Basin 5 $15,080 $1,508 $183,210 $31,178
Permian Basin 6 $63,960 $6,396 $119,520 $21,847

Sweetwater $20,340 $2,034 $56,857 $10,996
Witchita $6,705 $670 $58,006 $10,042
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Figure 13: Calibrated Parameters: CO2 Response
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calibrated model against the estimated and static models. Emission predictions
from the calibrated model lie in between the static model and the dynamic
model with estimated parameters, but are more similar to the dynamic model.
Baseline emissions with the calibrated parameters are about 1% lower then the
model with the estimated parameters. Also, the emissions reduction at high
carbon prices is not quite as large with calibrated parameters. Overall though,
the calibrated counterfactual is quite similar to the estimated counterfactual.
This might be a bit surprising given that the estimated startup costs are much
larger than the calibrated ones. The similarity is partly due to the fact that the
magnitude of the structural errors has also decreased in the calibrated model.
Higher variance in the structural errors means that firms still have some prob-
ability of starting up despite higher startup costs.

Average prices with calibrated startup costs are also very similar to the
counterfactuals with estimated startup costs. In each case the calibrated model
predicts average prices that are about $1 lower than before. The variance of
prices, however, has decreased significantly; the variance had decreased by half
in the most extreme case. However, it is still 50% higher than the variance in
the static model.

Lower calibrated startup costs have a positive impact on profitability. Coal
profits experience very small changes; they lose one percentage point fewer prof-
its in each carbon price scenario. On the flip side, gas plants enjoy higher profits
with lower startup costs. This is especially true for steam gas and simple cy-
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cle generators who see significant increases in profits when compared with the
counterfactuals with estimated parameters. Since these are the generators that
do the most cycling, they are the generators that see the greatest benefit from
lower startup costs.

The central theme of the results is not sensitive to calibrating the model
with lower startup costs. Counterfactual emissions follow a path not unlike that
was found with the estimated parameters. Also, the calibrated model still has
significantly higher price variance than the static formulation. The most saliant
differences are found in the profitability changes of high-cost gas generators.
These marginal generators had small increases or small decreases in profits with
high startup costs, while under lower startup costs they benefit considerably
from pricing carbon.

Table 20: Calibrated Counterfactual: Profits and Prices

Carbon Price
$0 $20 $40 $80

Δ Profit:
Coal – -24% -47% -82%
Combined Cycle Gas – 17% 35% 99%
Steam Gas – 23% 48% 95%
Gas Turbine – 37% 43% 14%

Dynamic Prices:
Average $/MWh $62 $71 $82 $111
Percent Change – 15% 35% 78%
Variance $198 $203 $280 $182

Within-Day $141 $150 $207 $134
Across-Day $56 $53 $72 $47

63


