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Abstract

This paper examines how much carbon emissions from the electricity industry would
decrease in response to a carbon price. We show how both carbon prices and cheap
natural gas reduce, in a nearly identical manner, the historic cost advantage of coal-
fired power plants. The shale revolution has resulted in unprecedented variation in
natural gas prices that we use to estimate the short-run price elasticity of abatement.
Our estimates imply that a price of $20 ($70) per ton of carbon dioxide would reduce
emissions by 5% (10%). Furthermore, carbon prices are much more effective at reducing
emissions when natural gas prices are low. In contrast, modest carbon prices have
negligible effects when gas prices are at levels seen prior to the shale revolution.
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1 Introduction

Over the past decade, regulators implemented many policies to mitigate climate change.

Some policies set a price on carbon dioxide, including the EU’s Emissions Trading Sys-

tem, British Columbia’s carbon tax, northeastern states’ Regional Greenhouse Gas Initiative

(RGGI), and California’s Cap-and-Trade (CAT) Program. In contrast, US federal policies

either indirectly address climate change (e.g., weatherization and renewables programs) or

mandate standards, like tightening the Corporate Average Fuel Economy standards or cap-

ping emissions rates for new power plants. Although debated frequently, a federal price on

carbon remains elusive.1

This paper examines how a carbon price is likely to affect emissions from the US electricity

sector, which accounts for about one third of US greenhouse gases (EPA 2013). Firms can

respond to carbon prices immediately by altering the mix of power plants used to meet

demand: this is known as fuel switching. The EPA’s Clean Power Plan proposed rule expects

fuel switching (“building block two”) to be the major mechanism for compliance. 2 Lafrancois

(2012) estimates that switching generation from the currently operating coal plants to the

available, underutilized capacity at natural gas plants could reduce carbon dioxide (CO 2)

emissions from the electricity industry by 23 to 42 percent. Whether or not this is feasible

given the constraints on the electricity grid is an empirical question. This paper measures

the expected environmental benefits from fuel switching in response to a range of carbon

prices.

In order to do this, we consider how carbon prices influence the marginal cost of producing

electricity. The first contribution of this paper is to show how a carbon price provides similar

incentives for fuel switching as does a change in the cost ratio: namely the price of coal (per

unit of heat content) over the price of natural gas. Briefly, higher carbon prices make

coal-fired power plants less competitive than natural gas-fired power plants. Other power

plants (nuclear, hydroelectric, and other renewables) have low marginal costs and remain

1In June 2014, EPA proposed the Clean Power Plan that could be implemented as a cap-and-trade
program. Past attempts to set a national carbon price include the Waxman-Markey bill.

2The EPA (2014) reports the expected emissions rate reductions for each building block and state. For
20 states, fuel switching accounts for the majority of the reductions while building blocks 1, 3, and 4 are
dominant in 1, 14 and 14 states, respectively (Vermont is exempt).
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inframarginal.3 Similarly, when the cost ratio rises, natural gas plants gain an advantage:

some cheap baseload coal plants may be displaced by even cheaper combined-cycle natural

gas plants. While broadly this is true of other pollutants, we discuss why the mapping from

cost ratios to carbon prices is substantially more precise. This mapping is important since

we have no national carbon price that we could use to identify the short run marginal cost of

abating carbon. Even where there are regional policies, there is limited variation in carbon

prices.

On the other hand, we have recently observed abundant variation in natural gas prices.

Technological advances in drilling (i.e., hydrofracturing) have allowed firms to extract natural

gas from shale formations. This “shale revolution” has resulted in a short run glut of gas:

natural gas production has increased 26 percent from 2005 to 2012.4 Furthermore, there are

limited options to export substantial quantities of natural gas outside of North America. As

a result, gas prices have dropped from over $12 per million British thermal units (mmBTU)

to less than $2.5 In 2012, gas in the US was less than a third of the cost of gas in Europe

(see Figure 1).6

Figure 1: US and European Natural Gas Prices

3Oil-fired power plants produced less than 1% of the electricity during our sample (EIA 2014).
4The Energy Information Administration (EIA) provides data on monthly natural gas production at

www.eia.gov/dnav/ng/hist/n9010us2m.htm (accessed August 7, 2014).
5Henry Hub prices were $12.69 per mmBTU in June 2008 and $1.95 in April 2012. The EIA provides

these monthly prices at www.eia.gov/dnav/ng/hist/rngwhhdm.htm (accessed August 7, 2014).
6The sharp drop in prices in 2008 reflects the recession. Since then, European prices have returned to

levels seen before the recession while US prices remain low due to shale gas production (EIA 2012). These
data are nominal prices from the World Bank Commodity Price Data (Pink Sheet).
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Using recent variation in fuel prices, we estimate the relationship between CO 2 emissions

and the coal-to-gas cost ratio using a flexible functional form. This revealed preference

approach measures actual behavior of firms in the market, whatever may be their incentives

and information sets as well as the constraints of their power plants and the electricity grid.

Our analysis controls for several factors, including electricity load (the quantity consumed),

temperature, generation from non-fossil sources, and net imports from Canada. In addition,

we use time period fixed effects to proxy for macroeconomic shocks, other policies affecting

the electricity sector, and power plant entry and exits. We find that when gas prices fall

from $6 to $2, holding coal prices fixed, we predict a ten percent drop in aggregate CO2

emissions.

Next we map this response curve into carbon prices. When baseline prices of natural

gas are low, carbon prices are effective at reducing emissions. In particular, at the Energy

Information Administration’s expected fuel prices over the next decade (EIA 2012), we find

that even a carbon price of $10 ($20) per ton of CO2 would reduce emissions about two (five)

percent. A mandate of a ten percent reduction would be costly: the carbon price would need

to be approximately $70/ton and would cost over $6 billion a year.

In contrast, when coal holds a sizable cost advantage over natural gas, a marginal change

in the cost ratio has no notable effect on emissions. Thus, for high natural gas prices, even a

moderate carbon price would have a limited impact on emissions. For example, if gas prices

return to historic levels (due to environmental regulations either banning or raising the costs

of hydrofracking), then even a price of $20 per ton of CO2 would reduce emissions by less

than one percent. Even a $60/ton price would reduce emissions by only 5.5 percent.

We also decompose the emissions effects by fuel type. As carbon prices lead to fuel

switching, emissions from natural gas plants do increase: a $20 carbon price (relative to

EIA-forecasted fuel prices) increases aggregate emissions by less than one percent through

this mechanism. However, the emissions reductions from coal plants more than offset this

effect. The same $20 price will decrease aggregate emissions by almost six percent because

of coal plants operating less. Finally, we show how a carbon price can result in co-benefits by

reducing local emissions, in aggregate, in an approximately proportional manner. We find

spatial heterogeneity in this response, which matters for health effects (Burtraw, Krupnick,
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Mansur, Austin & Farrell 1998).

We acknowledge that, in addition to the impacts we estimate, carbon prices provide

further incentives for a multitude of responses that go beyond fuel switching. 7 Consumers

facing higher electricity prices will conserve energy, for example, by using energy-efficient

technologies. Firms will build power plants that pollute few, if any, carbon emissions. In

addition, companies may invest in order to make existing power plants operate more effi-

ciently. These options are important in considering the overall effect of a carbon policy in

the long run. However some carbon policies, like California’s CAT and RGGI, are designed

to protect consumers from rate increases. Furthermore, these other options take time (power

plants are long lived) while policy tends to seek short-term performance. 8 Carbon pricing

will lead to new investments and demand response in time, however the short-run response

from fuel switching can be an important component from a political perspective.

Several recent papers directly examine the short-run effects of a carbon tax on emissions. 9

Newcomer, Blumsack, Apt, Lave & Morgan (2008) construct supply functions based on

static, least-cost optimization: in other words, they assume price-taking behavior and ignore

technological constraints on operating power plants in order to model a static supply curve.

For electricity markets in the mid-Atlantic (PJM), the upper-Midwest (MISO) and Texas

(ERCOT), they find that a $35/ton tax would result in a 2-2.5% carbon reduction due

to fuel-switching.10 Cullen (2013a) estimates a dynamic model of power plant production

decisions and finds that a $20/ton tax would have only a negligible effect on emissions in the

Texas electricity market. Our study complements these papers by using observed market

behavior to generate reduced-form estimates of short-run abatement costs.

7Fell & Linn (2013) model how carbon prices compare with other renewables policies through a number
of pathways to reducing emissions.

8For example, the EU ETS was criticized for over-allocating permits making the policy ineffective in its
first few years (Ellerman & Buchner 2007). Similarly, RGGI has had extremely low prices which has led
regulators to tighten the cap in 2013.

9For example, Metcalf (2009) uses MIT’s Emissions Prediction and Policy Analysis model and finds that
a $15 carbon price (in 2005 dollars per metric ton) would reduce US CO2 emissions for all sectors by 8.4%
in 2015.

10Overall they find reductions of about ten percent in PJM and MISO and about a third as much in
ERCOT, but most of this is due to an assumed price response from consumers (with an assumed elasticity of
-0.1). In practice, it remains unclear how much of the cost increases from carbon policies will be passed on
to end users. For example, California grandfathers permits to utilities explicitly to protect customers from
cost increases.
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Another related literature examines how the low natural gas prices reduced emissions from

the power sector.11 Holladay & LaRiviere (2014) use hourly data for each of the eight North

American Electric Reliability Corporation (NERC) regions to estimate the marginal emis-

sions from regional fossil-fired gross generation. They show how their estimates have changed

from a high gas price regime (2005-2008) to a low price regime (2009-2011). Linn, Muehlen-

bachs & Wang (2013) and Knittel, Metaxoglou & Trindade (2014) show how plant-level

monthly production decisions change with cheap gas. Pratson, Haerer & Patio-Echeverri

(2013) calculate the average cost of electricity generation for individual fossil plants and

find that, under current regulations, coal plants maintain a cost advantage over gas plants

if the coal-to-gas cost ratio lies below 0.56. Lu, Salovaara & McElroy (2012) regress coal

production (as a share of monthly generation in a given census region) on the cost difference

between natural gas and coal. They find that coal shares are responsive only to coal-to-gas

cost ratios above 0.33 in most regions, and conclude that the drop in natural gas prices from

2008 to 2009 reduced CO2 emissions from the US power sector by 4.3 percent, or half of the

observed 8.8 percent reduction.12 Finally, they use their analysis to analyze carbon taxes and

find that a $20/ton of CO2 tax reduces annual electricity-sector emissions by seven percent.

In contrast to this research, our paper accounts for the integrated grid across regions, esti-

mates a flexible functional form of the daily cost ratio, and examines a longer time horizon

with greater heterogeneity in natural gas prices.

We proceed with a brief discussion of the electricity industry in Section 2. Section 3

shows how cost ratios map into carbon prices and discusses caveats. Sections 4 and 5

describe the data and empirical model, respectively, on the link between fuel costs and

carbon emissions. Section 6 shows the results of this model and then uses these estimates to

examine the implications for carbon pricing. Section 7 extends our analysis to study a high

gas price situation and to measure the co-benefits of pricing carbon, namely reductions in

local pollutants. Finally, we offer our conclusion in Section 8.

11Related government studies include Logan, Heath & Macknick (2012) and EPA (2013).
12Linn, Mastrangelo & Burtraw (2014) find a similar result. When natural gas prices are high relative

to coal prices, the effect of coal prices on electricity production from coal-fired power plants is smaller than
when the prices are close together.
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2 Background

Coal-fired power plants produce most of the electricity in the US (EIA 2014). On average,

these baseload plants have low operating costs, are slow to adjust, and are costly to start up.

However, there is substantial heterogeneity in the marginal cost of operating these plants.

Some older, less efficient plants operate only during relatively high demand months. Most

gas-fired generators fall into two categories: gas turbine peaker plants and combined cycle

gas turbines (CCGT). Peaker plants have relatively low capital costs and high marginal costs.

They operate during high demand hours, as power is prohibitively expensive to store and

demand varies substantially over hours of the day and across seasons. In contrast, baseload

CCGT plants are the most efficient fossil plants at turning the fuel’s energy into power: i.e.,

they have low heat rates (mmBTU/kWh). As such, some gas-fired power plants may have

lower marginal costs than the most efficient coal plants even if coal costs less, per BTU, than

natural gas.

Lower gas prices have been a boon for gas-fired generators in the US. Efficient gas power

plants found themselves in the position to undercut coal-fired power plants. Figure 2 shows

the monthly average electricity generation for power plants burning coal or natural gas from

2001 to the present.13 While coal-based generation has generally been declining since the

start of this century, a notable drop occurred in 2012 when natural gas briefly overtook it as

the dominant fuel source. Note that this fuel switching primarily occurs across plants, not

within a given plant.14

The degree to which production switches from coal to gas generation will depend on

several factors. From a static dispatch framework, fuel switching depends on the relative

fuel prices, the relative heat rates, the available capacity of gas plants, and the demand

for electricity. In addition, intra-day fluctuations in electricity demand may be important as

some generators are not well suited for starting and stopping production frequently. Start-up

costs, ramping rates, minimum down times, and other intertemporal constraints limit firms’

operation decisions (Mansur 2008, Cullen 2013a). In addition, coal plants may be limited in

13This figure is based on EIA form 923 data that we describe in Section 4. See figure B.8 in the online
appendix for a figure on the generation shares by region, fuel type, and month.

14See Knittel et al. (2014) for a discussion of fuel switching within these dual-fuel plants.
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Figure 2: Monthly Generation by Fuel Type

the short run by contractual obligations to receive new coal shipments not easily resold. 15

Furthermore, the transmission grid limits how much power plants can produce. As elec-

tricity is not stored, power supply and demand must equate at all times. This is subject to

the network of transmission lines’ capacity constraints, as well as the plants’ intertemporal

constraints (Mansur & White 2012, Davis & Hausman 2015). Therefore, optimal dispatch

from a least-cost static model differs from the dynamic optimization.

Finally, observed production may differ from a static model’s prediction for a number

of other reasons. Namely, power plants face forced outages whereby they cannot operate

when planned. Firms may have imperfect information about trading opportunities (Mansur

& White 2012). Firms may exercise market power (Borenstein, Bushnell & Wolak 2002,

Mansur 2007b, Puller 2007, Bushnell, Mansur & Saravia 2008). For these reasons, our

analysis will use regressions to identify how firms actually respond to relative fuel prices.

The US electricity grid consists of three interconnections: East, West, and ERCOT (see

Figure 3). Electricity produced in each interconnection is synchronized, allowing electricity

to flow freely throughout the interconnection. Relatively little energy is transferred via

direct current lines between interconnections due to the costs involved in transferring power

15This effect may lower the marginal cost of production to near zero or even negative if there are stockpiling
constraints.
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Figure 3: Electricity Interconnections

between asynchronous grids.16 Analysis on a finer geographic scale is possible, but presents

problems for measuring net emissions reductions in each area due to energy transfers between

sub-regions within an interconnection.17

3 Theory

3.1 Mapping Carbon Pricing

Pricing carbon makes natural gas-fired generators more competitive with those burning coal.

For a fossil-fired power plant, the marginal cost of producing electricity (MC) is a function of

its variable operating and maintenance costs (V O&M), heat rate (HR), price of fuel (Pfuel),

carbon content(CO2

btu
), and carbon price (Pco2):

18

MC = V O&M + HR ∙ Pfuel + HR ∙
CO2

btu
Pco2. (1)

Although pricing carbon dioxide emissions increases marginal costs for both gas and coal

16Novan (forthcoming) provides an example of some power plants in SPP capable of selling into ERCOT.
In addition, DC lines do connect interconnections like from Quebec to New England.

17 We revisit this issue when discussing the co-benefits of carbon pricing in Section 7.2.
18The V O&M costs include expenses for major overhauls, treating water, pumping water for cooling

towers, replacing filters, etc. In addition to costs shown in equation (1), firms may have had to purchase, or
forgo selling, pollution permits (e.g., sulfur dioxide permit prices). While these costs were extremely small
relative to fuel costs during most of our sample, our analysis controls for them.
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plants, coal contains approximately twice as much CO2 per unit of energy as natural gas.

Thus, pricing carbon will affect the marginal costs of coal plants more than those of an

equivalent gas plant. As previously mentioned, CCGT plants are more efficient than coal

plants. These both lead to marginal costs rising more steeply with carbon prices for coal

plants than gas plants. Figure 4 illustrates the change in marginal costs for an average coal

plant relative to gas-fired technologies (CCGT and peaker) as the price of carbon increases. 19

Figure 4: Carbon Prices and Generator Marginal Costs

We examine the ratio of fuel costs, rather than the cost difference, for several reasons.

First, the ratio captures how fuel prices translate into marginal costs. Suppose a gas plant

is 25% more efficient than a coal plant. Then, assuming similar VO&M costs, the gas plant

will have the same marginal cost when the cost ratio, CR ≡ PC/PG, equals 0.8. Production

would switch between these generators as prices crossed this point. In fact, for a given cost

ratio, the ordering of generators by marginal costs will be identical regardless of the level of

19Typical heat rates for each technology are used to create this illustration. The heat rates are as
follows: coal (10,730 mmBTU/kWh), CCGT (7070), and gas peaker (11,200). To calculate emissions
costs, we use the following emissions factors for the carbon content of natural gas (117.0 lbs/mmBTU)
and coal (210.86 lbs/mmBTU) based on the rates reported by the EIA (http://www.eia.gov/tools/faqs/
faq.cfm?id=73&t=11). We weight bituminous, lignite, and sub-bituminous rates based on the aggregate
annual fuel consumption of coal by power plants in 2011 (EIA form-923).
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fuel costs.

To illustrate, consider a high cost and low cost scenario. In the low cost scenario, let

PC = $2 and PG = $2.50. For the high cost scenario, let PC = $6.40 and PG = $8. In both

cases, the cost ratio is the same at 0.8. Now order all the generators on the grid from lowest

marginal cost to highest marginal cost to create an industry cost curve. From Equation (1),

we see that since the marginal cost of a generator depends on the product of its fuel cost

and heat rate, the ordering of generators will be identical in each scenario. If generator A

has 10% lower marginal costs than generator B in the low cost scenario, then it will also

have 10% lower marginal costs in the high cost scenario.20 For a simple dispatch model,

the two scenarios will have identical dispatch orders (based on marginal costs) and therefore

the same output and emissions from each power plant in order to supply a given amount of

electricity. A second motivation for using the cost ratio is that it serves as a parsimonious

function that translates the two dimensions of fuel costs (i.e., coal and natural gas) into a

single dimensional object that is simple to interpret.

Since coal costs are relatively constant over our time period, estimation by cost ratio

is very similar to using other functional forms, such as differences and interactions of fuel

costs. However, the cost ratio will be useful for connecting the estimated emission reductions

to a counterfactual carbon price. We examine other functional forms in section A.2 of the

appendix .

As mentioned previously, charging for carbon dioxide emissions increases the cost of

burning coal more than burning gas. That is, it will increase the coal-to-gas cost ratio. For

example, if coal were priced at $2.25/mmBTU and gas were priced at $5.75/mmBTU, this

would imply a cost ratio of 0.39. Using this as a baseline, we can examine how a price on

carbon would change the cost ratio. For instance, putting a $20/ton price on CO2 would

change the cost ratio from 0.39 to 0.63.

Table 1 shows the mapping between carbon prices and cost ratios under the baseline for

carbon prices up to $100/ton CO2. High carbon prices can push the cost ratio above one;

this means that a unit of energy form coal is now more expensive than a unit of energy

from gas. Carbon prices are only one reason the cost ratio might change. Table 2 takes an

20This assumes negligible VO&M costs.
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Table 1: Cost Ratios with Carbon Price

Carbon Gas Cost Coal Cost Coal/Gas
Price Fuel + Carbon = Total Fuel + Carbon = Total Cost Ratio

$0 5.75 + 0.00 = $5.75 2.25 + 0.00 = $2.25 0.39
$10 . + 0.59 = $6.34 . + 1.05 = $3.30 0.52
$20 . + 1.17 = $6.92 . + 2.11 = $4.36 0.63
$30 . + 1.76 = $7.51 . + 3.16 = $5.41 0.72
$40 . + 2.34 = $8.09 . + 4.22 = $6.47 0.80
$50 . + 2.93 = $8.68 . + 5.27 = $7.52 0.87
$60 . + 3.51 = $9.26 . + 6.32 = $8.57 0.93
$70 . + 4.10 = $9.85 . + 7.38 = $9.63 0.98
$80 . + 4.68 = $10.43 . + 8.43 = $10.68 1.02
$90 . + 5.27 = $11.02 . + 9.49 = $11.74 1.07
$100 5.75 + 5.85 = $11.60 2.25 + 10.54 = $12.79 1.10

Notes : Fuel costs are in $/mmBTU and carbon price is in $/ton of CO2.

alternative perspective. Rather than using a carbon price to change the baseline cost ratio,

it looks at how lowering the price of gas could achieve a similar change in the cost ratio.

We can replicate the cost ratios under carbon pricing by varying the price of gas between

$2-$5/mmBTU.

Table 2: Cost Ratios with Low Gas Price

Carbon Gas Cost Coal Cost Coal/Gas
Price Fuel Fuel Cost Ratio

$0 $5.75 $2.25 0.39
$0 $4.33 . 0.52
$0 $3.57 . 0.63
$0 $3.13 . 0.72
$0 $2.81 . 0.80
$0 $2.59 . 0.87
$0 $2.42 . 0.93
$0 $2.30 . 0.98
$0 $2.21 . 1.02
$0 $2.10 . 1.07
$0 $2.05 $2.25 1.10

Herein lies the intuition for our subsequent results. We use variation in the cost ratios

observed in our data to understand how emissions change when gas generators become more
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competitive with coal plants. Since pricing carbon will change the relative costs of gas

and coal generators in an identical manner, we then project our results into the space of

carbon pricing to obtain an estimate of the short-run abatement cost curve in the electricity

industry. In order for this to be project to be valid, relative marginal costs must be the

primary driver of electricity production and emissions in the short run. It must also be the

case that firms treat a shock to marginal costs that is due to fuel prices the same as they

would a comparable shock to marginal costs that is due to carbon prices. Fabra & Reguant

(2014) find evidence that firms in the Spanish electricity market treat these shocks similarly.

3.2 Identification and Caveats

Here we examine the similarities and differences between cost ratios and carbon prices. We

know that pricing carbon will lead to low coal/gas cost ratios and higher fuel prices. The

question is: can we use our experience with low coal/gas cost ratios and lower fuel prices

to understand carbon pricing? This is equivalent to establishing the conditions under which

the cost ratio is a sufficient statistic for the production emissions from the electricity sector.

Namely, we ask: when will the following relationship regarding emissions (Et) a time t hold?

f(CRt) = Et = f(CRt, Pgt), (2)

where CRt is the cost ratio and Pgt is the all-in natural gas cost (including carbon prices).

Emissions in the electricity sector depend on both the equilibrium quantity of electricity

demanded and technological mix of supply. For illustrative purposes, lets us compare a high

cost and a low cost scenario with the same cost ratio as we did previously (CR = 0.8).21

Figure 5 shows a set of simple supply curves where generators are ordered by their constant

marginal costs.22 For a given realization of demand, it is clear that the production and emis-

sions of each generator are identical in both cases. Thus fixing the quantity demanded, the

cost ratio is a sufficient statistic for emissions when marginal costs alone dictate production.

However, what is also clear is that the equilibrium price is much higher in the high cost case.

21The prices used for the gas and coal are identical to the previous example. For the low cost scenario, we
let PC = $2 and PG = $2.50. For the high cost scenario, we let PC = $6.40 and PG = $8. In both cases the
cost ratio is 0.8. Note that the high cost case corresponds closely to the $40 carbon price in Table 1.

22This assumes price-taking firms and no intertemporal or transmission constraints.
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Higher prices will be at least partially passed through to consumers. The demand reduction

due to these higher prices will lead to lower carbon emissions for the same cost ratio. Only

with a perfectly inelastic demand curve will cost ratios be a sufficient statistic for emissions.

Although mapping our estimates into carbon prices is only consistent with an inelastic de-

mand curve, the results will be able to highlight the degree to which technology switching

can contribute to emissions reductions under a carbon tax absent any demand response. 23 In

addition, this scenario is consistent with policies targeting supply-side effects and insulating

consumers from price increases by rebating carbon costs back to their electricity bill. 24

Figure 5: Hypothetical Supply Curves with the Same Cost Ratio
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Even conditional on quantity demanded, the cost ratio may fail to be a sufficient statistic

for emissions if the supply side of the market changes with the level of fuel costs. In general,

the profits of a generator at a fixed cost ratio will change with the level of prices. However,

this will affect emissions only if the difference in profits either affects the dispatch order of

23The analysis also assumes that the behavior of low marginal cost renewable and nuclear generators are
unaffected by higher equilibrium electricity prices. Given that these generators already have incentives to
operate at full capacity whenever possible, this assumptions seems reasonable.

24 Although this approach is not well suited for estimating the demand response to carbon pricing, we
can examine how the technological response would change if demand were at a lower level. In the appendix,
figure A.5 shows very similar declines in emissions due to a carbon price at lower levels of demand.
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generators or induces changes in installed capacity.

At first it may not be obvious why profits, and not relative marginal costs, would dictate

the production of generators. However, there are short-run and medium-run dynamic con-

siderations in operating a generator. In the short run, generators make operating decisions

amid fluctuating intra-day demand. This necessitates that some generators shut down and

restart leading them in incur costs of adjustment. Generators will start production only if

they expect to cover their start-up costs while operating. Since the profits of generators

will be different under the two scenarios with the same cost ratios, firms may undertake

different startup decisions. This is lessened if their start-up costs scale with the fuel prices.

Although fuel costs are a central part of start-up costs, they are not the only component.

Thus will not scale perfectly with fuel costs. The degree to which changes in dynamics affect

the outcomes is difficult to judge given our approach. However, structural dynamic estima-

tion of electricity markets indicates that start-up costs are not a driving factor for aggregate

carbon emissions changes under a carbon tax (Cullen 2013a). In the medium run, plants

must cover their fixed costs of operation. If they cannot cover their fixed costs they may

temporarily exit the market by mothballing their plant. The plants with high fixed costs

and high adjustment costs tend to be larger and dirtier facilities such as coal plants. To

the extent that the low fuel costs in our data would make it more difficult for these plants

to cover these costs, our results would tend to overestimate the reduction of emissions due

to carbon pricing. In addition, firms may have greater incentive to exercise market power

when fuel prices are high: this will also affect the dispatch order and therefore emissions

(Mansur 2007a).25

Even if identical cost ratios imply the were to imply the same dispatch order, the difference

in profits between high and low cost scenarios would provide greater incentive for investment

in inframarginal generators. In particular, clean generating technology with little or no

carbon emissions would become much more attractive as investments. For this reason,

our results onto map cleanly between carbon prices and gas prices only when there is no

investment in new capacity. To summarize, our method will have little to say about the

25High fuel prices will result in a steeper marginal cost curve of the competitive fringe. Strategic firms
facing a less-elastic residual demand function have greater incentive to exercise market power (see Mansur
(2013).
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reductions in emissions that will come from longer run adjustments in capacity or demand,

but will be able to trace out the short-run abatement cost curve for the electricity sector. 26

4 Data

Our data are compiled from several public sources and cover January 2006 to December 2012.

The Continuous Emissions Monitoring System (CEMS) of the Environmental Protection

Agency (EPA) measures hourly output of CO2, sulfur dioxide (SO2), and nitrogen oxides

(NOx) from generators larger than 25 megawatts. We aggregate the hourly generator-level

emissions information to construct daily CO2 emissions. Generators are then aggregated by

interconnection to create a measure of daily, regional CO2 emissions. We aggregate the other

pollutants by NERC region.

Second, we use data on electricity consumption (or load) provided by the Federal Energy

Regulatory Commission (FERC). FERC Form 714 provides hourly information on electricity

load by balancing area. We aggregate load to the daily level and sum across areas to arrive

at daily electrical load by interconnection.

Third, we use EIA Form 923 data on production of electricity from non-fossil sources and

prices paid for coal deliveries by power plants. EIA provides monthly electricity production

by NERC region for nuclear and hydro power plants as well as for renewable sources (such as

wind, solar and geothermal). We aggregate these data to the interconnection level for each

type of non-fossil monthly electricity production: nuclear, water, and renewables. We also

collect data from the National Energy Board of Canada on monthly net imports of power

into each interconnection in the US.27 We use monthly data on permit prices for SO2 from

CantorCO2e and the EPA Clean Air Markets progress reports.

Fuel prices are aggregated by interconnection. In practice, there is some spatial hetero-

geneity in coal prices and, to a lesser degree, in natural gas prices. How much a power plant

26Unlike other pollutants, the carbon content of a given fuel type is relatively homogeneous. Furthermore,
there are no economically feasible end-of-pipe abatement technologies. In contrast, the ratio of nitrogen ox-
ides emissions across plants, for example, varies widely because of differences in technologies and operational
decisions. Thus while mapping cost ratios to carbon emissions is reasonable, we do not recommend using
this approach for the pricing of other pollutants.

27See http://www.neb-one.gc.ca/CommodityStatistics/Statistics.aspx?language=english, accessed August
27, 2014.

15



generates will depend on its own marginal costs as well as that of other plants: all fuel prices

affect the order of dispatch. We simplify the vector of all power plants’ fuel costs by looking

at the average price of each fossil fuel.28

The EIA reports coal prices by transaction (plant, month, contract type, coal type, coal

source, etc.).29 We use this information to create a weighted-average price for each month

and interconnection. In particular, we use data from 2001 to 2012 for spot prices only

(dropping long term contracts over 12 months). For each interconnection, we regress coal

costs on sulfur, ash, and BTU content, an indicator of surface mining, plant fixed effects,

and indicator variables for each month of the sample. We estimate the model using weighted

least squares, where we weight using a transaction’s volume (in tons). The appendix reports

the estimates (see Table A.1) and how they are used to construct a monthly coal price index

for each region, holding coal composition fixed (see Figure A.1).

Finally, we use data from the Intercontinental Exchange (ICE) on the spot prices for

natural gas at trading hubs around the country. ICE is an independent open-access electronic

exchange for trading wholesale energy and metals commodities. For each gas hub, they report

the average trading price for transactions on that day. For each interconnection, we weight

the hub prices by the nameplate capacity of surrounding gas generators to arrive at a daily

average spot price of natural gas. Although gas generators may have long term financial

contracts for gas, the spot price for natural gas represents the opportunity cost to generators

for using the gas to generate electricity versus selling it on the spot market. The general

trends in the data are illustrated in Figure 1 using monthly averages.

Table 3 reports the mean and standard deviation for each interconnection. The East is

the largest market by far with over four times the load in the West, which in turn is more

than double ERCOT. The East is also the most carbon intensive with emissions over six

times that in other markets.30 The table also reports the summary statistics on the fuel

prices for each region. All markets show substantial temporal variation in the cost ratio.

While some of the variation in fuel prices is across regions, most of it is over time. The

28Note that if these spatial differences are a constant percentage of the average price, then this hetero-
geneity will be captured in our model, much like the heterogeneity in heat rates.

29In reverse chronological order, the data sources are EIA-923, EIA-906, EIA-920, FERC 423, and EIA-423.
30We report load in gigawatt-hours (GWh) per day and emissions rates in tons of CO2 per megawatt-hour

(MWh), where a GWh is one thousand MWh and one million kWh.
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coal-to-gas cost ratio is 0.43 on average in the East and slightly smaller in the other markets.

Table 3: Summary Statistics

Variable Units Eastern ERCOT Western

CO2 Emissions 1000s tons/day 5,005 527 802
(768) (89) (119)

Load GWh/day 7,456 866 1,835
(879) (159) (168)

Emissions Rate Tons/MWh 0.67 0.61 0.44
(0.04) (0.05) (0.05)

Coal Price $/mmBTU 2.50 2.20 1.84
(0.42) (0.34) (0.24)

Gas Price $/mmBTU 5.49 5.10 5.04
(2.28) (2.13) (1.95)

Cost Ratio 0.43 0.41 0.35
(0.88) (0.81) (0.76)

Observations 2,557 2,557 2,557

In the next section, we use these data to trace out the emission response of the electricity

system to changes in input costs while controlling for important features of the market.

However, we first calculate how much of a reduction in carbon emissions is feasible given the

current stock of power plants.

As a simple back-of-the-envelope calculation, we examine whether there is sufficient ca-

pacity at natural gas facilities to have a substantial effect on carbon emissions. 31 Table 4

reports the share of carbon emissions that could be reduced in 2012, assuming a derating

factor of 90%. Similar to Lafrancois (2012), we see that there is enough unused gas capacity

to reduce emissions by about 40%. These results vary over time.32

31See section B.2 of the online appendix for details on the methodology.
32The table B.1 in the online appendix shows shares for each year from 2001 to 2012 for derating factors

of both 90% and 80%. In 2001, unused gas capacity was the limiting factor so that only 25% of emissions
could be reduced. Starting in 2003, investment in gas capacity had grown such that unused gas capacity
exceeded coal production in nearly every hour in the West and in ERCOT, and about 12-29% of the time
in the East.
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Table 4: Potential Shares of Carbon Emissions Reduced from Fuel Switching

Eastern ERCOT Western
0.42 0.37 0.40

5 Empirical Model

We aim to create a simple, yet flexible model that can trace out the response of emis-

sions to changes in relative fuel that can accommodate the varied technologies on the grid

and their complex interactions in electricity markets. The method used is similar to the

literature that econometrically estimates the relationship between emissions and either elec-

tricity consumption (Holland & Mansur 2008, Graff Zivin, Kotchen & Mansur 2014), elec-

tricity generation (Callaway & Fowlie 2009, Siler-Evans, Azevedo & Morgan 2012, Holladay

& LaRiviere 2014, Davis & Hausman 2015), and wind production (Cullen 2013b, Kaffine,

McBee & Lieskovsky 2013, Novan forthcoming, Fell & Kaffine 2014).

The model is a reduced-form regression with daily emissions (CO2t) in an interconnection

as the dependent variable. For day t, the estimating equation is:

CO2t = s(CRt|β) + s(loadt|θ) + s(tempt|ω) + Xtψ + Dγ + εt. (3)

The variable loadt is the total daily electricity load on the interconnection and tempt is the

average temperature of the day. Since production and its associated emissions may respond

in a complex non-linear fashion to the cost ratio, load, and temperature, we use a flexible,

semi-parametric functional form for s(.) to trace out the emissions response of the system.

Specifically, we use a cubic spline with six knot points for each of the variables. 33 We

control for other factors, Xt, in more traditional parametric ways. We capture the within-

day distribution of hourly load using the minimum, maximum, and standard deviation of

daily load. We also control for monthly net imports of electricity from Canada, non-fossil

electricity production (wind, solar, hydro, nuclear, etc.), and the SO 2 permit prices. Finally,

we include a dummy variable (D) for each quarter in the time series to control for trends in

generating capacity, macroeconomic shocks, as well as seasonality in generator availability. 34

33In section A.3 of the appendix, we test the robustness of our results to different numbers of knots and
find the results to be stable with four or more.

34Below we examine a balanced sample of power plants to determine the importance of plant turnover.
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The importance of these controls is discussed below.

For identification, we rely on exogenous shocks to natural gas prices. When selecting

controls, we need to include variables that would directly affect the interconnection emissions

that might also be correlated with the variation in input fuel costs. The quantity of electricity

demanded, or load, obviously meets this criteria. The quantity demanded on a given day,

although driven by weather and day-specific demand shocks, may be correlated with the spot

price for gas. This may be because electricity generators demand more gas when electricity

demand is high or simply a correlation in the demand for electricity and the demand of gas

outside the electricity sector, such as home heating. For example, lower electricity demand

and emissions due to a negative macroeconomic shock would be correlated with low prices

for natural gas due to the same shock. Failing to account for electricity demand would tend

to overestimate the response of emissions to the price gap. Thus we include daily electricity

demand in the interconnection as a control variable. We also include monthly net imports

of electricity from Canada to control for demand satisfied by generators outside the US

system.35

Daily temperature in the interconnection is included as an independent control to appease

the laws of thermodynamics. Although weather shocks do affect electricity demand, we are

already directly controlling for demand shocks in the model. However, temperature directly

effects the efficiency of fossil fuel generators due to thermodynamic considerations. When the

outside temperature is lower, thermal generators can take advantage of the larger tempera-

ture differential to produce more electricity with the same amount of fuel. Thus emissions

may be lower during colder time periods even after controlling for electricity demand.

Non-fossil electricity production has low marginal costs and therefore is not likely to

change in response to gas or coal prices. However, they may be correlated with them. For

example, wind power installations have been growing at the same time as technological in-

novation has led to more shale gas extraction. Likewise, seasonal variation in the availability

of hydroelectric generating capacity may influence the spot prices of natural gas.

35The Eastern interconnection is most affect by international imports. On average, imports supply 1.3%
of monthly load. The Western interconnection on the other hand is a net exporter of electricity, but it only
exports 0.4% of monthly production on average. ERCOT does not have significant international transfers of
electricity.
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We include moments of the distribution of daily demand to account for any within-

day dynamics in the production of electricity. For example, a day with high variability in

electricity demand throughout the day may require more flexible, but less efficient generators

than a day with the same total electricity demand but lower variability (Holland & Mansur

2008). For this reason we include the minimum, maximum, and standard deviation of within-

day demand as controls. Finally we include the price SO2 permits which directly affect the

marginal cost of certain coal generators.

In order to account for serial correlation and heteroscedasticity, we use Newey-West

standard errors allowing for a seven-day lag structure. Since we are using semi-parametric

methods, the values of the coefficients are not easily interpretable. Rather, with the estimated

coefficients, we graphically trace out the emissions response of the electricity generating

system to changes in the relative costs of coal and gas.36

6 Results

6.1 Main Results

The results from the estimation for each interconnection are shown in Figure 6. We plot the

percent change in carbon dioxide emissions against the price of natural gas, using the EIA

(2012) expected future coal prices to construct the cost ratio.37 Dashed lines show the 95%

confidence interval for the estimates using Newey-West corrected standard errors.

The results show statistically insignificant changes in emissions for high gas prices. That

is, when gas prices are above $6 (per mmBTU), changes in gas prices do not result in

switching between high polluting plants and cleaner facilities. Not until the gas prices

approach $4-$5, do emissions begin to fall. For the Eastern interconnection, emissions fall

by about 10% when the gas price falls to $2. For ERCOT and the Western interconnection,

carbon emissions fall by about ten and thirteen percent, respectively, at this gas price. The

rate of decline is also steeper in ERCOT and the West than in the East. This may be due

to the fact that the East is a much larger grid with more heterogeneity in the generating

36For completeness and replicability, we include the full set of estimated parameters with their associated
standard errors in table B.2 of the online appendix.

37Changes are relative to the emissions given the EIA expected future natural gas and coal prices. Control
variables, such as demand and non-fossil electricity production, are held at their average levels in the sample.
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Figure 6: Estimated CO2 Response to Fuel Prices

(a) Eastern Interconnection

(b) ERCOT Interconnection

(c) Western Interconnection
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capacity. Keep in mind that $2 reflects historically low gas prices. This brings much of

the gas-fired fleet on par with coal-fired generators. Though the reduction in emissions is

significant, it does not begin to approach the 40% estimates predicted by the back-of-the-

envelope calculation in Section 4. This suggests that dynamics, transmission constraints, or

other factors excluded from simpler models greatly reduce the emissions reductions possible

from fuel switching.

6.2 Effect of Carbon Price on Carbon Emissions

We use the electricity industry’s experience with low gas prices to explore how the industry

may respond to a carbon tax. As a first step, we need to choose a baseline level for fuel prices

from which to compare the effect of various carbon prices. In this section, we assume that

these prices are exogenously determined, with prices returning to the long run average costs

of extracting and processing the fuels. The EIA (2012) forecasts that average delivered coal

prices will be $2.25/mmBTU and gas prices will be $5.75/mmBTU in 2025. This implies a

baseline cost ratio of 0.39, which will serve as our benchmark.38

Next we map the emissions response curves from Section 6 into carbon prices using the

logic discussed in Section 3. As shown in Tables 1 and 2, for any cost ratio observed in the

data, there is a matching counterfactual carbon price with the same cost ratio given the

baseline fuel prices. As previously discussed, the ordering of the generators in the industry

marginal cost curve will be identical, whenever the fuel cost ratios are the same. The industry

cost curve under a carbon tax will be proportional to the cost curve in the data with the

same cost ratio.

With fixed baseline fuel costs, we can project our estimates of emissions reductions due

to shocks to gas prices onto their equivalent carbon price. For each region, Figure 7 shows

the estimated emissions reductions that would come from a carbon price (in $/ton of CO2)

under these assumptions. The figures focus on the cost ratios that correspond to positive

38When calculating a carbon tax from fuel prices, we do not account for the impact that an increasing
carbon tax may have on the equilibrium price of fuels. That is, a higher carbon price will lead to increased
demand for natural gas which could increase the price of gas. Estimating the price elasticity of supply for
each fuel type is beyond the scope of this paper. Rather, we assume that baseline fuel prices are fixed and
exogenous. Given that incorporating any price response of fuels to a carbon tax would tend to decrease the
emissions reductions for higher carbon taxes, our results represent generous estimates of emissions reductions
from a carbon tax.
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Figure 7: Imputed CO2 Response to Carbon Prices

(a) Eastern Interconnection

(b) ERCOT Interconnection

(c) Western Interconnection
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carbon prices under the baseline fuel costs. They show that emissions fall steeply at lower

levels of carbon tax, but then the rate of change decreases for higher levels of carbon tax.

These results indicate that much of the emissions reduction from technology switching can

be captured with a relatively modest price on carbon. High price carbon on carbon do result

in some further reduction in carbon dioxide emissions, but the large impact from high carbon

price is likely to come from retooling the generating infrastructure.

Specifically, we find that even a carbon price of $10/ton would reduce emissions about 2.2

percent (see Table 5). However, to achieve a ten percent reduction, the carbon price would

need to be closer to $70/ton. A national supply curve for abatement can be constructed by

horizontally summing these three markets after multiplying the percent changes in emissions

by their respective baseline emissions levels.39 For example, a carbon price of $20/ton would

reduce daily emissions by over 320,000 tons (4.9%).

Table 5: Predicted Emissions (and Percentage Abatement)

Tax East ERCOT West All

0 51.7 (0.0%) 5.7 (0.0%) 8.7 (0.0%) 66.2 (0.0%)
10 50.5 (2.4%) 5.6 (2.6%) 8.7 (0.6%) 64.8 (2.2%)
20 49.0 (5.4%) 5.5 (4.2%) 8.5 (2.1%) 63.0 (4.9%)
30 48.0 (7.2%) 5.5 (4.7%) 8.3 (4.7%) 61.8 (6.7%)
40 47.5 (8.3%) 5.4 (5.3%) 8.1 (7.2%) 61.0 (7.9%)
50 47.1 (8.9%) 5.4 (6.2%) 7.9 (9.5%) 60.4 (8.8%)
60 46.9 (9.4%) 5.3 (7.1%) 7.7 (11.5%) 59.9 (9.5%)
70 46.7 (9.8%) 5.3 (7.9%) 7.6 (13.1%) 59.5 (10.0%)
80 46.6 (10.0%) 5.2 (8.6%) 7.5 (13.6%) 59.3 (10.4%)

Notes: Prediction emissions are in 100,000 tons/day.

6.3 Effect on Carbon Emissions by Fuel Type

The previous sections have examined aggregate emissions from all sources collectively. In

this section, we decompose the emissions changes by fuel type. Fuel switching implies that

coal generators will decrease emissions while at the same time gas generators increase their

production and associated emissions. We have already shown that aggregate emission will

39Baseline daily CO2 emissions are 5,174,485 tons in the East, 574,506 tons in ERCOT, and 870,567 tons
in the West.
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still fall since gas generators are cleaner than the coal generators whose production they are

replacing. We test this insight in our data.

To decompose emissions, we identify the fuel burned by generating facilities in the CEMS

data. To do this we utilize the fuel consumption data from EIA form 923. We assign a facility

to a fuel type if it accounts for the majority of the fuel consumed at the facility.To determine

the dominant fuel type for each facility, we calculated the total quantity of each type of

fuel (in MMBTU) burned at the each facility from 2003 through 2012. Most facilities have

multiple fuel types either because start up fuel is required or because a facility has multiple

generators types at its location.40 For example, a facility might house one large coal generator

and several smaller gas generators.

The results confirm that fuel switching is driving our results. Table 6 shows that re-

ductions in emissions from coal facilities are larger than aggregate reductions in each of the

three regions. Gas facilities, on the other hand, increase their emissions, but by a much

smaller amount than decreased emissions from coal facilities. The results at other carbon

prices show the same qualitative relationship. As carbon prices increase, emissions decrease

steeply at coal plants and increase more modestly at gas plants.

Since a mix of generators may exist a facility of a given fuel type, our results should

not be strictly interpreted as the reduction in emissions from burning a particular fuel, but

rather as the reduction in emissions from facilities consume mostly that fuel type. The fact

that gas generators may be collocated at coal facilities means that the reduction in emissions

from burning coal will be biased toward zero. For example, emissions at a facility dominated

by coal may have a larger decrease in emissions from coal generators that is attenuated by

increased production from gas generators at the same facility. Likewise if coal generators are

located at facilities dominated by gas generation, the increase in emissions from gas facilities

will be biased toward zero.

40Start up fuel is typically used at coal-fired power plants to pre-heat the combustion chamber so that coal
can be properly combusted. For example, fuel oil may be used to ignite coal until the combustion chamber
reaches a critical temperature and the process becomes self sustaining.
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Table 6: CO2 Emissions Abated at $20/ton by Fuel Type*

East ERCOT West

Coal -5.97 -6.16 -3.29
(0.45) (1.09) (1.02)

Gas 0.40 2.33 1.21
(0.25) (0.61) (0.58)

Other 0.18 -0.37 –
(0.06) (0.08) –

Total -5.39 -4.21 -2.08

*Percentage of baseline emissions

6.4 Robustness

Given the complexity of electricity markets, it is quite likely that the response of emissions

to coal and gas prices is highly non-linear. To be sure that our specification is constraint

our results, we examine the robustness of the results to our functional form assumptions of

coal and gas prices and specification of the cubic spline. We find that the results do not

change when using different functions of fuel prices as shown in figure A.2. Likewise the

results are very stable over a range of possible knot points for the cubic spline as shown

in figure A.3. We also examine the distribution of data over the domain fuel and carbon

prices. Additionally, figures B.3-B.5 show the density of data over the relevant domain. The

relatively uniform density of data suggests that we are not relying on a only few observations

plus functional form to identify the response of the system to relevant carbon prices. Thus

we have some confidence that our results are not being driven by functional form.

We also examine the sensitivity of the results to dropping our controls and to differing

time fixed effects. The controls are very important for correctly estimating the effect of gas

prices on emissions. For example, failing to control for load leads to much larger estimated

reductions from low gas prices. The specification of time fixed effects is less dramatic, but

still important. Notably one specification includes month-of-sample fixed effects that control

for all variation in our estimated coal prices. Even within a month, we observe modest fuel

switching due to variation in daily natural gas prices. We also examine aggregate emissions

from a balanced sample of power plants to determine if part of our measured effect is due to
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entry and exit.41 The full results of the sensitivity analyses can be found in section B.6 of

the online appendix.

We have considered concerns of potential endogeneity. We rely on exogenous variation in

natural gas prices for identification. While we control for the effect that electricity demand

and temperature might have on fuel prices, a random shock to daily emissions, conditional

on electricity demand, could shift the market demand for fuels. For example, suppose a large

coal fired-power plant is forced to shut down for a few days. All else equal, this increases

demand for natural gas and while at the same time emissions fall. In theory, this could

increase the price of natural gas and introduce bias into our the coefficient estimates. This

would imply that our estimates are an underestimate of the true effect. However, we argue

that these biases are likely to be small. First, we have included most of the factors that

affect fuel choice like production from non-fossil power plants, net imports, etc. Second,

the storage of electricity and fuels are dramatically different: While power is prohibitively

expensive to store, fuels are storable commodities. Today’s natural gas price reflects current

both weather conditions and electricity load, but also expectations about future demand.

Thus, one day’s demand shock may have limited effect on prices.

7 Extensions

In this section, we extend our analysis to examine other counterfactual situations. First,

we highlight that the effectiveness of a carbon tax depend crucially on the market price for

gas and coal. Then we use our methodology to examine the co-benefits of pricing carbon.

Specifically, we estimate the extent to which regulating carbon may reduce other harmful

pollutants, like sulfur dioxide and nitrogen oxides, which are typically emitted alongside of

carbon dioxide.

41In this robustness check, we remove from the dataset any plants that may have entered or exited at
some point during the sample. By examining only the stable set of plants, we can exclude, for example, a
coal plant that exited due to low electricity prices driven by cheap gas. A plant is considered stable if it
produced in each year from 2006 to 2012. Using the stable set plants, we apply the same methodology as
in our main specification. We find that the results using the stables plants are very similar and statistically
indistinguishable over the relevant range of carbon taxes.
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7.1 Carbon Pricing Under High Gas Prices

The results of the paper thus far are based a counterfactual situation where future market

prices for fuels are based on EIA’s predicted fuel prices for 2025. However, it is possible that

gas prices will be much higher than expected. For example, new environmental regulations

could increase the cost of shale gas production or even impose a ban on fracking. Before

shale gas became a major share of US gas production, the US and Europe had similar natural

gas prices (see Figure 1). While the recession lowered European gas prices, they returned to

pre-recession levels by 2012.

We can use our estimates to examine how effective carbon prices would be at reducing

emissions in a high-natural-gas-price world. We do so by assuming that US fuel prices also

returned to the levels seen in the spring of 2008.42 Figure 8 shows the effect of carbon

pricing under that assumption side by side with our main results which have lower natural

gas prices. The figure shows that, when natural gas prices are high, carbon prices are much

less effective at reducing carbon emissions. For example, a $20/ton carbon price reduces

carbon emissions in the East by about six percent in the base case (see Figure 7a), but by

less than one percent when gas prices are high. In other words, in order to achieve a carbon

cap-and-trade target, a much higher carbon permit price would be required if gas prices

were high. The intuition for this is quite straightforward. Since dirty coal generators enjoy

a much larger marginal cost advantage when gas prices are high, a price on carbon is much

less effective at inducing generation from cleaner generators.

42In April of 2008, fuel prices were $2.46/mmBtu for coal and $10.28/mmBTU for natural gas, implying
a coal-to-gas cost ratio of 0.24.
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Figure 8: Emission Response Limited in a High Gas Price Scenario

Notes: Response is for the Eastern Interconnection. The base case is on the left, and the high gas prices

case is on the right.

7.2 Co-Benefits of Carbon Price

By changing the dispatch of power plants, carbon prices are likely to reduce other pollutants

like SO2 and NOx that have local and regional health effects.43 For each interconnection,

we replicate the estimation and simulation methods of Sections 5 and 6.2 where we replace

the dependent variable in equation (3) with the daily emissions of either SO2 or NOx within

a given interconnection. We estimate how these emissions depend on the coal-to-gas cost

ratio, which we then convert into a carbon price as above.

Figure 9 shows the aggregate response of SO2 emissions to carbon prices. We see that a

$20/ton carbon price results in about a 6% drop in emissions in each region. However, the

functions differ at other prices. For example, a 10% drop in SO2 emissions would require

a carbon price of $40 in the East or the West, but almost double that in ERCOT. Figure

10 shows the response curves for NOx emissions by region. Here a large reduction in NOx

emissions would occur from a much larger carbon price in the East than in the other regions. 44

43Burtraw et al. (1998) and Chestnut & Mills (2005) examine the environmental benefits of federal regu-
lations of local pollutants. See Schmalensee & Stavins (2013) for a recent discussion of these policies.

44Note that these figures mask important spatial variation. Unlike CO2 emissions, the location of these
local emissions matters for estimating the marginal damages. While a precise estimate of these marginal
damages is beyond the scope of this paper, we do examine the spatial distribution of these emissions. In
particular, we modify equation (3) by defining the dependent variable as the daily emissions (SO2 or NOx)
within a given subregion of an interconnection. Figure B.6 in the online appendix shows the regional variation
in responses. Figure B.7 maps these subregions as defined in the EPA’s eGrid database.
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Some caution should be used in interpreting these results. If a cap-and-trade market

already exists, for SO2 for example, then an additional carbon tax cannot effect aggregate

emissions (assuming the cap continues to bind). This does not mean that the market will

be unaffected: a carbon tax reduces demand for SO2 permits, the permit prices will fall,

and the spatial distribution of emissions will change. Even for the direct effects on CO 2

emissions, the California and RGGI markets are now capping emissions in their respective

areas. During our sample period, RGGI permits were quite low and California was just

starting to trade, making it very unlikely that these policies affect our estimates. However,

going forward, it is important to keep in mind how state, regional, and national carbon

policies interact (Goulder & Stavins 2011).

8 Conclusion

This paper provides estimates, based on observed behavior rather than simulations, of the

impact of carbon pricing on electricity-sector emissions. We show how lower gas prices and

a carbon price can affect the relative costs of generators in similar ways. This paper exploits

significant variation in natural gas prices that resulted from a rare combination of factors:

a large recession, the start of the shale revolution, and limited capacity to export gas. In

the near future, the federal government projects an end to these low prices as exports rise

and the economy recovers (EIA 2012). In this paper, we use the recent price variation

to estimate how the electricity sector’s carbon emissions respond to fuel cost shocks, and

examine conditions under which this response to relative fuel prices can inform us about

how a price on carbon dioxide will change emissions in the short run. Understanding how a

carbon price will affect polluting firms in the short run is an important step in demonstrating

the effectiveness of such an instrument for use in the long run. On a longer time horizon,

even greater emissions reductions could be expected as new generation could be built and

consumers could adjust to new equilibrium electricity prices.

Our results indicate that carbon prices will result in a modest effect on emissions: even

a price of $60 per ton of carbon dioxide will reduce emissions only 10%. However, much of

the reduction in carbon dioxide emissions can be captured with a relatively modest carbon

tax: a price of $20 reduces emissions by 6%. Furthermore, carbon prices are much more
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effective at reducing emissions when natural gas prices are low. In contrast, modest carbon

prices have negligible effects when gas prices are at levels seen prior to the shale revolution.

Finally, we show how a carbon price can result in co-benefits by reducing local emissions, in

aggregate, in an approximately proportional manner.

Many emissions trading policies including the EU ETS, RGGI, and RECLAIM have

been criticized for their effectiveness in reducing emissions in the short run. 45 While the

overarching objective of climate policy is to reduce aggregate cumulative emissions of green-

house gases, much of the focus to date has been on the short-run impacts. We argue that

understanding how firms fuel switch is important in knowing how effective a market-based

instrument can be in the short run, where the policy debate over carbon pricing seems to

focus.

45Tvinnereim (2014) discusses several reasons why many cap-and-trade policies have had lower permit
prices than expected. Concerns over RECLAIM were due to high prices, non-compliance, and environmental
justice (see Fowlie, Holland & Mansur (2012) for an analysis of these concerns).
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A Appendix

A.1 Coal Price Regressions

Section 4 discusses the method we use to calculate a coal price index. In this appendix,
we report the regression results for each region (see Table A.1). We also show the national
average for comparison. While the type of coal a power plant purchases may change in
response to natural gas prices, we are concerned that the heterogeneity in coal transactions
within a plant may also reflect noise. So, we construct a coal price index based on the average
coal characteristics in a region as of January 2001. We then add the monthly fixed effects to
the base price, thereby keeping the coal composition constant for a region. This coal price
index in shown in Appendix Figure A.1.

Table A.1: Coal Price Index Regression Results

Variable National East West ERCOT
Sulfur -13.59*** -13.59*** -10.51* 1.40

(1.38) (1.36) (5.77) (12.86)

Ash 2.09*** 2.69*** -1.53*** 0.40
(0.26) (0.33) (0.35) (2.00)

Mine -7.99*** -10.88*** 19.31*** 32.33***
(1.81) (1.88) (5.99) (7.13)

Btu 4.40*** 4.37*** 5.33*** 5.24*
(1.40) (1.42) (0.95) (3.09)

Month-Year F.E. Yes Yes Yes Yes
Plant F.E. Yes Yes Yes Yes
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Figure A.1: Monthly Coal Price Indices

A.2 Robustness to Function of Relative Fuel Costs

Figure A.2 estimates the level of emissions in the East as a function of fuel prices using
three different functional forms of relative fuel prices. They are (1) our main specification
of coal/gas ratio, (2) the inverse ratio of gas/coal, and (3) the price difference of the natural
gas price minus the coal price (in $/mmBTU). All three ratios show very similar mappings
of gas prices to emissions, holding coal prices fixed.

Figure A.2: Robustness to Functional Form of Fuel Costs
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A.3 Robustness to the Number of Knots

The main results use six knots in the cubic splines of several variables, including the cost
ratio. Figure A.3 shows how the predicted emissions in the East change with the number
of knots in comparison to Figure 6a. We see that for four and five knots, the results are
virtually identical to the model with six knots and lie completely within the 95% confidence
of the six knot specification. For the model with only three knots, the emissions response is
overstated at high gas prices, where there are few observations. This model also smoothes
over the sharp drop in emissions around $5/mmBTU. The model with seven knots is more
sensitive to noise in the data that leads to non-monotonicity in the response curve. It is also
almost entirely within the 95% confidence interval of the six knot specification. Overall, the
results are qualitatively and statistically insensitive to the number of knots used to form the
cubic spline.

Figure A.3: Robustness to Number of Knots

A.4 Electricity Demand

Our analysis does not account for the change in electricity demand that may occur when
equilibrium electricity prices increase under a carbon tax. Although we cannot impute the
demand response to higher counterfactual electricity prices, we can understand how a price
on carbon would affect emissions if demand were lower. We do this by splitting the sample
by the median daily demand in each month of the sample. That is, we define high demand
days in a month to be those days whose demand is higher than the median demand in that
month. Low demand days are those below the median. We do this by month of sample to
avoid selection on seasonality or time trend. That is, we avoid comparing only winter months
to only summer months or the beginning of the sample to the end of the sample. In a month,
some days will be happen to be higher demand due to weather and other shocks to demand.
This limits the difference in demand between the high and low demand groups, but ensures
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a comparable sample. The average difference between the high and low demand sample is
about 10% of demand as shown in table A.2. This can be seen in the kernel densities of
the two regimes. Figure A.4a shows the density of demand has a similar shape but shifts in
the high and low demand regimes. Although there is a shift in the distribution of demand,
the distribution of gas/coal cost ratios is almost identical in the two regimes as shown in
figure A.4b. We use the same specification used for our main results to estimate the response
of emissions to variation in the cost ration in both the high demand and the low demand
sample. The results, shown in figure A.5, demonstrate that there is very little difference
between the high and low demand samples. Only in ERCOT at very low gas prices is there
a divergence. As we would expect, low demand implies a higher response to relative prices.

Table A.2: Average Daily Demand (GWh) in High and Low Demand Samples

Low High % Difference

East 7053 7855 10.2
ERCOT 810 922 12.2
West 1758 1910 8.0

Figure A.4: Distributions by Demand Regime: Eastern Interconnection

(a) Demand (b) Gas/Coal Ratio
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Figure A.5: CO2 Response in High and Low Demand Periods

(a) Eastern Interconnection

(b) ERCOT Interconnection

(c) Western Interconnection
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B Appendix for Online Publication

B.1 Gas Prices and Coal/Gas Cost Ratio

For comparison with the coal prices, Figure B.1 shows variation in gas prices over time for
each of the three regions. Figure B.2 shows the variation in the ratio of the coal to gas price
which is the variable of interest in our estimation procedure. Both gas prices and the ratio
show substantial variation over time and across regions. Even in later time periods we see
substation variation in the coal to gas price ratio. Even after 2010 we have cost ratios that
range between 0.5 and 1.25. These correspond to a carbon taxes less than $10 and greater
than $100 at our baseline prices for gas and coal.

Figure B.1: Daily Gas Price Index by Region
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Figure B.2: Coal/Gas Price Ratio by Region

B.2 Simple Model of Potential Fuel Switching

This section of the appendix describes the methodology that we use to calculate the potential
for fuel switching. First we calculate the total electricity generated (genift) in interconnection
i, fuel type f , and hour of sample t:

genift = eiagenifm ∙
cemsgenift∑

t∈m

cemsgenift

,

where eiagenifm is the aggregate monthly net generation reported in EIA form-923 and
cemsgenift is the hourly gross generation reported by CEMS.46 In other words, we use the
variation within a month reported by CEMS to distribute the EIA monthly generation.

Next we calculate the nameplate capacity by fuel type, month, and interconnection. We
define unused capacity as the difference between hourly generation and available capacity,
where available capacity is nameplate capacity that is derated to account for the fact that
power plants shut down for routine maintenance of because of forced outages. We test the
robustness of our calculations to several different derating factors (75% to 100% for each 5%
increment).

Finally, we calculate the carbon implications by comparing the unused capacity of natural
gas plants within an interconnection and hour with the contemporaneous generation from
coal-fired power plants. For each hour and interconnection, we calculate the generation from
coal generators that could be reallocated to idle natural gas capacity. This to produces
a measure of potential fuel switching. Surprisingly, in most hours, we find that there is
substantial unused gas capacity to completely offset all coal generation, even for low derating
rates. In order to convert generation into potential carbon reductions, we use the emissions

46We use a second measure of hourly generation (g̃enift) based on heat input data from CEMS to allocate
eiagenifm across hours in a month: g̃enift = eiagenifm ∙(cemsheatift/

∑

t∈m
cemsheatift), where cemsheatift

is the hourly heat input reported by CEMS. The results are quite similar.
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factors mentioned in footnote 19 and the average heat rate by year, interconnection and
fuel type: (

∑

m∈yr

eiaheatifm/
∑

m∈yr

eiagenifm), where eiaheatifm is the aggregate monthly heat

input reported in EIA form-923 for interconnection i, fuel type f , and month m in year yr.
Note that this calculation makes many assumptions about transmission capacity, power

plant operation capabilities, information, and incentives that we argued in Section 2 were
unreasonable and motivation for a more careful analysis that we revisit Section 5. Nonethe-
less, we report the simple model in order to get a sense of how much unused gas capacity is
available.

Table B.1 shows the potential reduction in carbon emissions by year for two derating
rates, 90% and 80%. The paper reports the results for just 2012 with a derating rate of 90%.

Table B.1: Potential Shares of Carbon Emissions Reduced from Fuel Switching

Derate at 90% Derate at 80%
Year East ERCOT West East ERCOT West

2001 0.28 0.31 0.26 0.24 0.30 0.21
2002 0.37 0.33 0.40 0.33 0.33 0.38
2003 0.44 0.34 0.41 0.41 0.34 0.40
2004 0.47 0.39 0.42 0.44 0.39 0.41
2005 0.46 0.39 0.44 0.43 0.39 0.43
2006 0.45 0.39 0.42 0.43 0.38 0.42
2007 0.45 0.39 0.41 0.42 0.39 0.40
2008 0.46 0.39 0.41 0.44 0.38 0.41
2009 0.47 0.39 0.41 0.45 0.38 0.40
2010 0.44 0.40 0.43 0.42 0.40 0.43
2011 0.45 0.40 0.44 0.42 0.39 0.44
2012 0.42 0.37 0.40 0.41 0.36 0.40
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B.3 Results and Data Distribution

In this section, we take the results shown in figures 6 and 7, and overlay histogram of variable
of interest to show the density of data that identify the curve. We also show the location
of the knot points used in estimation. These are shown for the East electricity generation
region, but the pattern is similar in the West and ERCOT. Figure B.3, shows the results as
gas prices decrease with the coal price fixed at the long run base case as in Figure 6a. The
six knot points spaced according to the distribution of the cost ratio at the 5, 23, 41, 59,
77, 95 percentiles. Importantly, the histogram shows that the data are dense in the areas
where the gas price is relatively low. Identifying the response of generators to low gas prices
is what allows the model to make predictions about the response of generators to a price on
carbon.

Figure B.4 transforms the results be a function of carbon prices as detailed in the body
of the paper. The curve is identical to the one in Figure 7a, but with percentage change
on the y-axis. We again have imposed the knot points and the histogram of the data onto
the estimated response curve. There are many data points up through about $60/ton after
which the density of the data begins to be stretched out. Note that only 5 knot points show
up in this graph. This because we only report the results for carbon prices less than $80/ton.
There are implied carbon prices in excess of $200/ton, but the data are sparse for higher
carbon prices. Thus, we have to rely more on the function form to identify the behavior of
generators for very high carbon prices. Also, these prices are less interesting from a policy
perspective. For comparison, the results over the full range of implied carbon prices is shown
in Figure B.5.

Figure B.3: Estimated CO2 Response to Fuel Prices
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Figure B.4: Imputed CO2 Response to Carbon Prices

Figure B.5: CO2 Response for Full Range of Imputed Carbon Prices
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B.4 Parameter Estimates

Table B.2 presents the parameter estimates and Newey West standard errors that allow for a
seven-day lag structure for our main results. Variables which are represented as a restricted
cubic spline have five parameters associated with them. These five parameters are associated
with transformed versions of the original variable. The transformation incorporates the
choice of the knot points and the restrictions on the cubic spline. Due to their transformation,
the individual parameters do not have a straightforward interpretation. However, we report
the estimates for completeness and replicability.

Table B.2: Parameter Estimates

East ERCOT West
Variable Coef. S.E. Coef. S.E. Coef. S.E.
Price Ratio 1 -205218 (521921) 93719 (62411) 352024 (160581)
Price Ratio 2 4760365 (1.75e+07) -2142828 (2260089) -8828279 (5094672)
Price Ratio 3 -1.33e+07 (2.42e+07) 2385139 (4171850) 1.29e+07 (8159820)
Price Ratio 4 2.16e+07 (1.17e+07) 910225 (2701735) -4620928 (4988153)
Price Ratio 5 -1.55e+07 (9142587) -2379661 (1601897) -764223 (3604246)
Daily Load 1 .788 (.0416) .42 (.0438) .37 (.0515)
Daily Load 2 -.189 (.295) .921 (.955) -.0982 (.371)
Daily Load 3 -.329 (1.53) -3.05 (2.63) -1.7 (2.31)
Daily Load 4 1.65 (2.19) 3.09 (2.44) 5.94 (4.06)
Daily Load 5 -1.76 (1.41) -1.16 (1.1) -6.14 (2.99)
Std Dev Load -10.8 (2.75) 9.55 (2.42) -2.76 (3.24)
Max Load 2.72 (.9) -1.48 (.803) 1.99 (1.14)
Min Load -6.36 (1.3) 4.8 (1.26) -1.41 (1.2)
Temperature 1 -15753 (2128) 67.7 (399) -1900 (803)
Temperature 2 48711 (11663) -1117 (1580) -969 (6152)
Temperature 3 -131112 (46188) -1303 (6788) 14344 (23569)
Temperature 4 210643 (76370) 26024 (16414) -15611 (33735)
Temperature 5 -61719 (104930) -61978 (29001) 17179 (29878)
Non-fossil .0101 (.00167) -.0133 (.00172) -.00813 (.000674)
Electricity Imports .0548 (.0146) .0142 (.006)
SO2 Prices -280 (71.7) 53.6 (10.1) 40.4 (21.1)
F.E. 2006 Q2 -176292 (38052) 5511 (8404) -25670 (17796)
F.E. 2006 Q3 -328363 (46541) 30799 (7180) 53294 (16994)
F.E. 2006 Q4 -99481 (78366) 38940 (6989) 90511 (17635)
F.E. 2007 Q1 -289146 (69998) 28511 (8359) 43597 (20572)
F.E. 2007 Q2 -124088 (53675) 31097 (7367) 18065 (19651)
F.E. 2007 Q3 -198244 (51447) 35511 (8034) 55407 (19871)
F.E. 2007 Q4 -51159 (51394) 45189 (7095) 78231 (18779)
F.E. 2008 Q1 -217079 (62074) 40065 (8723) 48960 (18903)
F.E. 2008 Q2 -282016 (73059) 82441 (10525) 49589 (24150)
F.E. 2008 Q3 -488521 (74887) 78210 (11649) 80486 (25276)
F.E. 2008 Q4 -150002 (73451) 59770 (12654) 97737 (26246)
F.E. 2009 Q1 -381247 (84577) 46438 (13461) 68137 (27406)
F.E. 2009 Q2 -175991 (86804) 61084 (14322) -6509 (30209)
F.E. 2009 Q3 -408618 (94665) 68576 (14683) 90599 (30585)
F.E. 2009 Q4 -319035 (85683) 76810 (13658) 95831 (28526)
F.E. 2010 Q1 -533501 (86725) 51957 (13920) 49514 (27808)
F.E. 2010 Q2 -274691 (89587) 68685 (16532) 26262 (30891)
F.E. 2010 Q3 -437117 (88881) 93294 (14893) 95810 (29840)
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F.E. 2010 Q4 -242801 (85932) 91877 (14820) 79171 (30085)
F.E. 2011 Q1 -483165 (90909) 91413 (14985) -385 (33313)
F.E. 2011 Q2 -277878 (88872) 99518 (15075) -71088 (30391)
F.E. 2011 Q3 -473267 (101035) 107840 (15263) 19183 (32634)
F.E. 2011 Q4 -506237 (95251) 88076 (14744) 52658 (31134)
F.E. 2012 Q1 -693847 (102784) 64690 (15812) 60991 (33189)
F.E. 2012 Q2 -475982 (100653) 66837 (18255) 207 (34720)
F.E. 2012 Q3 -644173 (106752) 90908 (15769) 33146 (34896)
F.E. 2012 Q4 -577845 (96159) 85238 (15545) 76350 (30975)
Constant 643968 (335912) 62601 (41208) 316994 (109735)
Observations 2557 2557 2557
R2 0.980 0.954 0.938

Standard errors in parentheses

Notes: Load is daily load; Non-fossil is non-fossil generation; Temp is temperature; Imports is Canadian net
imports of electricity. F.E. is time fixed effect.

B.5 Co-pollutants

This section complements the analysis shown in Figures 9 and 10 of the text by examining
how the effects of SO2 and NOx are disbursed spatially. The EPA subregions of the US
are showing graphically in the figure B.7 . Figure B.6 shows how a price of $20 per ton of
carbon dioxide would affect CO2, SO2, and NOx emissions in each region. The methodology
is identical to that described in the paper. In particular, note that the independent variables
are still at the interconnection level.

We see from the figure that the emissions response varies regionally. The subregions
SRVC (the North Carolina, South Carolina, and Virginia region), RFCE (the New Jersey,
Maryland, Delaware, and eastern Pennsylvania region), and NEWE (New England) show
the largest reductions of about ten percent for CO2.

However, this does not lead to the largest percent reductions in local pollutants. The
co-benefits (in percentage terms) are largest in SRVC and SRSO (the Alabama and Georgia
region) for NOx, and NEWE, SRVC, and CAMX (California) for SO2. Note that California
has very little SO2. The regional responses of three pollutants are positively correlated across
pollutants. However, they do show very different patterns.
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Figure B.7: Map of eGrid Subregions
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B.6 Sensitivity Analysis

In this appendix, we test the sensitivity of our main results. Tables B.3, B.4, and B.5
show the robustness results for each Interconnection to the controls of the model. The
predicted percent change in emissions at a $20 carbon is used as the benchmark value. The
first column uses no controls, but includes season-of-sample fixed effects. Further columns
add controls for electricity load, temperature, non-fossil generation, electricity imports and
sulfur dioxide permit prices. The final column, which includes all controls, is the preferred
specification used for the main results in the paper. In each interconnection, failing to control
for electricity demand shocks leads to a much higher estimates of emissions reduction due
to a carbon tax. Other controls tend to mitigate the estimated effects, but differences are
not as pronounced. In the West, however, controlling for non-fossil generation is particularly
important due to the large share of hydro capacity in the region.

We also explore the sensitivity of the results to various time fixed effects as well as sub-
samples of the data in Tables B.6, B.7, and B.8. The first column includes all the controls in
the main specification, but no season-of-sample fixed effects. The subsequent columns add
progressively finer, time-based fixed effects up to month-of-sample fixed effects. The final two
columns split the sample into the first and second half of the sample. Including fixed effects
in for a time trend is important for the results. Adding year fixed effects, which would control
for trends in the types of generating capacity on the grid, reduces the estimated impact in
each region. Controlling additionally for seasonality, with season-of-sample fixed effects,
increases the predicted effect of a $20 carbon price, though not dramatically. However, using
month-of-sample fixed effects absorbs much of the variation in prices necessary to identify
the effect. Month-of-sample fixed effects greatly reduce the estimated impact of a carbon
tax in all interconnections and render it statistically insignificant in ERCOT and the West.

We also check the extent to which the entry of cleaner generators or the exit of dirtier
generators contributes to our results. To do this we remove from the dataset any plants
that may have entered or exited at some point during the sample. We define a stable (non-
entering and non-exiting) plant as one that had positive electricity production in each year
from 2006 to 2012. By examining only the stable set of plants, we can exclude, for example,
a coal plant that exited due to low electricity prices driven by cheap gas. Using the stable
set plants, we apply the same methodology as in our main specification. We find that the
results using the stables plants are very similar and statistically indistinguishable over the
relevant range of carbon taxes as shown in figure B.9.
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Table B.3: Robustness to Controls (East)

(1) (2) (3) (4) (5) (6, Main)

CO2 Change -24.3*** -7.86*** -6.67*** -5.85*** -5.64*** -5.54***
at $20/ton (1.35) (0.46) (0.45) (0.46) (0.50) (0.50)

Load No Yes Yes Yes Yes Yes
Temperature No No Yes Yes Yes Yes
Non-fossil No No No Yes Yes Yes
Imports No No No No Yes Yes
SO2 Prices No No No No No Yes
Time F.E. Season Season Season Season Season Season
Obs 2557 2557 2557 2557 2557 2557

Standard errors shown in parentheses.

Table B.4: Robustness to Controls (ERCOT)

(1) (2) (3) (4) (5) (6, Main)

CO2 Change -23.1*** -4.61*** -4.22*** -3.92*** -3.92*** -3.96***
at $20/ton (2.31) (1.08) (1.22) (1.02) (1.02) (1.00)

Load No Yes Yes Yes Yes Yes
Temperature No No Yes Yes Yes Yes
Non-fossil No No No Yes Yes Yes
Imports No No No No N/A Yes
SO2 Prices No No No No No Yes
Time F.E. Season Season Season Season Season Season
Obs 2557 2557 2557 2557 2557 2557

Standard errors shown in parentheses. ERCOT did not have significant imports or exports of electricity

outside the US.
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Table B.5: Robustness to Controls (West)

(1) (2) (3) (4) (5) (6, Main)

CO2 Change -7.79*** 1.08 0.98 -2.59** -2.15 -2.05
at $20/ton (1.24) (0.99) (1.20) (1.10) (1.14) (1.14)

Load No Yes Yes Yes Yes Yes
Temperature No No Yes Yes Yes Yes
Non-fossil No No No Yes Yes Yes
Imports No No No No Yes Yes
SO2 Prices No No No No No Yes
Time F.E. Season Season Season Season Season Season
Obs 2557 2557 2557 2557 2557 2557

Standard errors shown in parentheses.

Table B.6: Robustness to Time Effects (East)

(1) (2) (3, Main) (4) (5) (6)

CO2 Change -5.64*** -4.16*** -5.54*** -2.87*** -4.22*** -4.54***
at $20/ton (0.59) (0.57) (0.50) (0.30) (0.90) (0.63)

Load Yes Yes Yes Yes Yes Yes
Temperature Yes Yes Yes Yes Yes Yes
Non-fossil Yes Yes Yes N/A Yes Yes
Imports Yes Yes Yes N/A Yes Yes
SO2 Prices Yes Yes Yes N/A Yes Yes
Time F.E. No Year Season Month Season Season
Sample Full Full Full Full 2006-2009 2009-2012
Obs 2557 2557 2557 2557 1278 1279

Standard errors shown in parentheses.
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Table B.7: Robustness to Time Effects (ERCOT)

(1) (2) (3, Main) (4) (5) (6)

CO2 Change -5.51*** -3.00*** -3.96*** -0.07 -2.75 -5.47***
at $20/ton (0.82) (0.97) (1.00) (1.04) (1.54) (1.10)

Load Yes Yes Yes Yes Yes Yes
Temperature Yes Yes Yes Yes Yes Yes
Non-fossil Yes Yes Yes N/A Yes Yes
Imports Yes Yes Yes N/A Yes Yes
SO2 Prices Yes Yes Yes N/A Yes Yes
Time F.E. No Year Season Month Season Season
Sample Full Full Full Full 2006-2009 2009-2012
Obs 2557 2557 2557 2557 1278 1279

Standard errors shown in parentheses.

Table B.8: Robustness to Time Effects (West)

(1) (2) (3, Main) (4) (5) (6)

CO2 Change -4.29*** -1.45 -2.05 -0.24 -4.49** -2.30**
at $20/ton (0.82) (0.91) (1.14) (0.99) (1.80) (1.01)

Load Yes Yes Yes Yes Yes Yes
Temperature Yes Yes Yes Yes Yes Yes
Non-fossil Yes Yes Yes N/A Yes Yes
Imports Yes Yes Yes N/A Yes Yes
SO2 Prices Yes Yes Yes N/A Yes Yes
Time F.E. No Year Season Month Season Season
Sample Full Full Full Full 2006-2009 2009-2012
Obs 2557 2557 2557 2557 1278 1279

Standard errors shown in parentheses.

54



Figure B.9: Stable Plants’ Response to Carbon Price by Interconnection

(a) Eastern Interconnection

(b) ERCOT Interconnection

(c) Western Interconnection
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